Whole Genome Comparison: Project Presentations

Felix Heeger, Max Homilius, Ivan Kel, Sabrina Krakau, Svenja Specovius, John Wiedenhoeft

July 19, 2010

Whole Genome Comparison: Project Presentations F. Heeger, M. Homilius, I. Kel, S. Krakau, S. Specovius, J. Wiedenhoeft

Outline

Evolutionary Events

2 A-Bruijn Alignment

- Construction of the A-Bruijn graph
- Simulation study
- Chromatin Remodeling Complex
- Carsonella

3 S-LAGAN

Evolutionary events

Nucleotide deletion, insertion and point mutation

$\begin{array}{ccc} CGTTCAT & \longrightarrow & CGT-CAT \\ CGTTCAT & \longrightarrow & CGTTTCAT \\ CGTTCAT & \longrightarrow & CGTCCAT \end{array}$

Whole Genome Comparison: Project Presentations F. Heeger, M. Homilius, I. Kel, S. Krakau, S. Specovius, J. Wiedenhoeft

Collinear alignment

Columns of aligned sequences

CONSENSUS	a.gttcctgc.tgcgtttgctggactgatgtactt.gtttgtgagg.caa
Hs#S663801	a.gttcctgc.tgcgtttgctggacttatgtactt.gtttgtgagg.caa
Hs#S337687	aagttcctgc.tgcgtttgctggactgatgtacttggtttgtgnaggcaa
Hs#S629177	a.gttcctgc.tgcgtttgctggactgatgtactt.gtttgtnagg.caa
Hs#S672957	a.gttcctgc.tgcgtttgct
Hs#S672182	a.gttcctgc.tgcgtttgctggactgatgtactt.gttt
Hs#S674099	a.gttcctgc.tgcgtttgctggactgatgtactt.gtttgtgagg.caa
Hs#S196113	a.gttnctgn.tgngtttgctggactgatgtactt.gtttgtgagg.caa
Hs#S994400	gtacnt.gtttgtgagg.cta
Hs#S80460	a.gttcctgc.tgcgtttgctggactgatgtactt.gtttgtgagg.caa
Hs#S1988018	a.gttcctgc.tgcttttgctggactgatgtactt.gattgtgagg.caa
Hs#S1794113	a.gttcctgc.tgcgcttgctggactgatgtactt.gtttgtgagg.caa
Hs#S4698	a.gttcctgc.tgcgtttgctggactgatgtactt.gtttgtgcgg.caa
Hs#S813765	a.gt.cctgc.g.cgtttgc.ggacggatgtactt.gtt.gtgagg.caa
Hs#S1184845	g.caa
Hs#S1577463	gg.caa
Hs#S914987	gtgagggcaa
Hs#S1985364	a.gttcctgc.tgcgtttgctggactgatgtactt.gtttgtgagg.caa
Hs#S1465644	gttc.tgcctgcgtttgctgaactgatgtactt.gttagt.aag.caa
Hs#S1850471	c.gttactgc.ggggtttgctggactcatg.actttgttngt.agg.caa

More evolutionary events

Genome rearrangements: duplication, reversal and deletion of segments

Whole Genome Comparison: Project Presentations F. Heeger, M. Homilius, I. Kel, S. Krakau, S. Specovius, J. Wiedenhoeft

Multidomain proteins

- Diverged by rearrangements of modular units, e.g. domains
- Multidomain proteins (MDPs) difficult to align collinearly

Whole Genome Comparison: Project Presentations

Multidomain protein toy example

Collinear alignment

• It's not possible to align all similar domains without reordering

Graph representation of alignments

- Arcs: input sequences
- Edges: matches
- Some edges may be inconsistent: mixed cycles

Non-collinear alignment

• Allow *large* cycles of *similar* segments

Construction of the A-Bruijn Graph

Whirls and inconsistencies

Whole Genome Comparison: Project Presentations

J. Wiedenhoeft

- simulate sequence evolution using PAM (*point accepted mutation*)
- two models of sequence evolution
 - geometric duplication/deletion model
 - rearrangement according to fragility model
- true homology can be tracked to provide a gold standard

- amino acid substitution modeled as a Markov process
- PAM = transition matrix
- using ABA's BLAST subroutine with PAM30 provides a null model of character homology

Geometric duplication/deletion model

- pick position by uniform distribution
- determine deletion or duplication by binomial distribution
- determine direction by binomial distribution
- determine length by geometric distribution

Fragility model

- models only translocations
- successful translocation *increases* the chance of a segment being translocated again ⇒ models conservation of substructures
- boundaries weighted by length of substructure
- borders of substructures are preferred as insertion spots \Rightarrow prevents disruption of other substructures

- true negatives are vast due to the low number of paralogs and the alignment bias (BLAST)
- hence precision and accuracy are not suitable measures

 $\frac{\rm FP + FN}{\rm FP + FN + TP}$

Results

Whole Genome Comparison: Project Presentations

Analysing Multidomain Proteins with ABA

- Noncolinear alignment applied on multidomain proteins (MDPs).
- Histone Deacetylation / Chromatin Remodeling Complexes.

HATs / CRCs

Regulation of gene expression.

Function of chromatin-remodeling complexes

Whole Genome Comparison: Project Presentations

- 262 proteins found in literature and manually annotated.
- Thanks to Sebastian, Ivan and Christoph!
- From S. cervisiae, S. pombe, D. melanogaster and H. Sapiens

- Can ABA recognize domain-like structures?
- Do domains move around in the complexes?
- What structures occur often?

- Applied to only 2 species.
- Rendering takes a long time.
- Hard to interprete (manually).

Parsing output of ABA

- Applied to 4 species.
- Reconstructed A-Bruijn Graph from ABA-Output.

Distribution of edge multiplicity

- High-weight edges point out to conserved and repeated elements.
- Within and across proteins.
- (Girth parameter did not seem to work.)

Whole Genome Comparison: Project Presentations

Distribution of edge multiplicity (filtered)

• Filtered distribution of the multiplicity of edges (length > 40).

Comparison with PFAM-Annotation

• Hidden markov models learned from multiple sequence alignments.

- Annotated all proteins with PFAM/HMMER.
- Detected 561 domains (not unique).

Distribution of edges with domains

- $\bullet~\approx$ 210 edges of multiplicity 1.
- pprox 150 edges of multiplicity 16.

Whole Genome Comparison: Project Presentations

Repeated domains

• Domains seem to share edges in ABA-graph.

Whole Genome Comparison: Project Presentations

Repeated domains

Domain	Average Multiplicity
DUF1679	21.0
Elf1	21.0
DUF1825	21.0
Fib_alpha	21.0
ZZ	17.7
Otopetrin	17.0
CDK5_activator	17.0
$RFX_DNA_binding$	1.0
zfC5HC2	1.0
DUF1542	1.0
Rep_N	1.0
DUF3619	1.0
TIP49	1.0
$HTH_{-}Mga$	1.0

Whole Genome Comparison: Project Presentations

- Do ABA-edges correlate with found domains?
- Apply real null model. Significance tests.
- Can ABA be used to complement the domains found with HMMER?

Non-Collinear Alignment: Reannotation of genomes.

Carosonella ruddii: an interesting thing

- unclassified γ -proteobacteria. (Like e.g. *E.Coli*)
- Sequenced 2006.

Carosonella ruddii

what is it?

• Smallest bacterial genome known. \rightarrow 160 Mb (!). E.Coli has 4,5 Gb

Smallest genome before Carsonella

• 362 protein-coding genes in Buchnera aphidicola BCc

Whole Genome Comparison: Project Presentations

• CG-Content: Very low (16%). *E.coli*: (50%)

GC-Content

GC Content is defined as: GC-content (or guanine-cytosine content), in molecular biology, is the percentage of specific bases on a DNA molecule which are either guanine or cytosine.

- CG-Content: Very low (16%). *E.coli*: (50%)
- First annotation: 213 genes. E.coli: 4400 genes

Minimal set of genes for life

• : Moya A. et al. proposed 2003 that the minimal gene set for a endosymbiotic life is close to 313.

Whole Genome Comparison: Project Presentations
• DNA replication and repair system is strongly degraded.

- DNA replication and repair system is strongly degraded.
- Transcriptioin machinery is reduced to core subunits of RNA Polymerase (no promotor-recognition)

- DNA replication and repair system is strongly degraded.
- Transcriptioin machinery is reduced to core subunits of RNA Polymerase (no promotor-recognition)
- Translation machinery is highly reduced. (three essential rRNAs are present)

- DNA replication and repair system is strongly degraded.
- Transcriptioin machinery is reduced to core subunits of RNA Polymerase (no promotor-recognition)
- Translation machinery is highly reduced. (three essential rRNAs are present)
- No Shine-Dalgarno sequence present (the way it is defiend)

16S rRNA and Shine-Dalgarno Sequence

• Shine-Dalgarno (SD) is a regulatory sequence strongly involved in translation of bacterial poly-cystronic mRNAs.

Interesting question

Is Carsonella ruddii a living cell?

• 9 aminoa-cyl-tRNA synthetases and 15 out of 50 essential ribosomal protein are **missing** or degraded.

Is Carsonella ruddii a living cell?

• 9 aminoa-cyl-tRNA synthetases and 15 out of 50 essential ribosomal protein are **missing** or degraded.

Two different theories

- C.ruddii is a bacteria which undergoes the change to endosymbiont.
- C.ruddii is an former primary endosymbiont, is being driven towards its extinction and replacement by a new symbiont.

Current Annotation

What has been done until now

- 2006: First annotaion (213 genes)
- 2007: Second annotation
- Both teams used well known Gene-prediction algorithms + collinear alignment

Current Annotation

What has been done until now

- 2006: First annotaion (213 genes)
- 2007: Second annotation
- Both teams used well known Gene-prediction algorithms + collinear alignment

Current Annotation

What has been done until now

- 2006: First annotaion (213 genes)
- 2007: Second annotation
- Both teams used well known Gene-prediction algorithms + collinear alignment
- Problem: Over-annotation of function of genes. Many genes that are believed to be orthologous are much shorter and therefore deffer in their function.

My goal

use an non-collinear alignment algorithm to reannotate the whole genome of C.ruddii

Algorithms

- $\bullet \ SuperMap + S-LAGAN$
- A-Bruijn Alignment (ABA)

- Carsonella Ruddii PV (160 kb genome, 213 genes)
- Buchnera aphidicola BCc (Cc) (+ a plasmid) : 450 kb. (397 genes)
- Candidatus Blochmannia floridanus: 705 kb. (631 genes).
- Wigglesworthia glossinidia (+ a plasmid): 698 kb. (651 genes)
- Baumannia cicadellinicola str. Hc: 686 kb (651 genes)

• A guiding tree (evolutionary tree) was build out of 16S-rRNAs of the species.

- A guiding tree (evolutionary tree) was build out of 16S-rRNAs of the species.
- Neighbor joining tree
- Maximum likelyhood tree

Whole Genome Comparison: Project Presentations

ABA Using "my" 5 Species

ABA Using "my" 5 Species

Species

- 0 and 5: Wigglesworthia
- 1 and 6: Buchnera aphidicola
- 2 and 7: Carsonella Ruddii
- 3 and 8: Blochmannia
- 4 and 9: Baumannia

Whole Genome Comparison: Project Presentations

ABA Using "Moya's" Species

ABA Using "Moya's" Species

Species

- 0 and 6: Buchnera aphidicola str. Cc
- 1 and 7: Buchnera aphidicola str. Bp
- 2 and 8: Buchnera aphidicola str. Sg
- 3 and 9: Buchnera aphidicola str. APS
- 4 and 10: Carsonella ruddii
- 5 and 11: E.Coli

Whole Genome Comparison: Project Presentations

2 Species (Carsonella and E.Coli) produce the same alignment as 6 Species from Moya paper

Example

region 0 - 46219 : 56 genes region 46219 - 47795 : 0 genes region 47795 - 53155 : 10 genes region 53155 - 53218 : 0 genes region 53218 - 54412 : 4 genes region 54412 - 56011 : 0 genes region 56011 - 58258 : 4 genes region 58258 - 59412 : 0 genes region 59412 - 65459 : 8 genes region 65459 - 67041 : 1 genes region 67041 - 70177 : 4 genes

Whole Genome Comparison: Project Presentations

Example

region 0 - 46219 : 56 genes region 46219 - 47795 : 0 genes region 47795 - 53155 : 10 genes region 53155 - 53218 : 0 genes region 53218 - 54412 : 4 genes region 54412 - 56011 : 0 genes region 56011 - 58258 : 4 genes region 58258 - 59412 : 0 genes region 59412 - 65459 : 8 genes region 65459 - 67041 : 1 genes region 67041 - 70177 : 4 genes

Whole Genome Comparison: Project Presentations

- There are still at least 29 genes with no assigned function.
- Insightes into the possibility to create symbiotic life.

Project: Reimplementation of S-LAGAN Using SeqAn F. Heeger, S. Specovius

Introduction to S-LAGAN

Implementation and Problems

Sesults

- S-LAGAN computes glocal alignments of 2 sequences
 → Set of local alignments which cover the whole sequence
- S-LAGAN is able to handle rearrangements

• No rearrangements

Translocation

Inversion

• Duplication

Whole Genome Comparison: Project Presentations

- Computation of local alignments
- Ochaining
- 8 Realignment of consistent subchains

S-LAGAN

1. Computation of local alignments

- S-LAGAN uses CHAOS for this step
- Applies CHAOS twice
 - \rightarrow Sequence 1 with sequence 2
 - \rightarrow Sequence 1 with reverse complement of sequence 2

2. Chaining

1-monotonic

S-LAGAN

3. Realignment of consistent subchains

- Consistent (co-linear) subchains are globally aligned
- S-LAGAN uses LAGAN for this step

- Implementation in SeqAn
- Extract Chaos from SeqAn implementation of LAGAN
- Implement 1-monotonic chaining
- Use existing SeqAn implementation of LAGAN

- Find seeds with q-gram index
- Merge overlapping seeds
- Chain seeds with Chaos algorithm
 - \rightarrow Segmentation Fault on certain data
 - \rightarrow Only gap-free local matches

- Graph with nodes representing local matches
- Edges to all matches, which can be chained 1-monotonic \rightarrow Heaviest path (Bellman-Ford Algorithm)
- $\mathcal{O}(n^3)$

Realign Consistent Subchains

- Find consistent subchains
- Align them with global alignment algorithm
- LAGAN runs into an endless loop on certain data \rightarrow Use Needleman-Wunsch Algorithm

Our implementation...

- is very slow
- can be used on small data, like virus genomes (\sim 5000 bp)
- finds manually inserted rearrangements
Motivation

Assume there are two assemblies obtained from different assemblers:

Aim: Assemble a genome sequence from given reads.

- Reads
 - \rightarrow Collection of short sequences
 - \rightarrow Obtained from an automated sequencer
 - \rightarrow Orientation is not known

Assemble overlapping reads together to obtain contigs.

• Contigs

 \rightarrow Large, contiguous fragments of assembled reads

Assembly Layout

Problem

 \downarrow

• Order and orientation of contigs is unknown

Search for a good assembly layout !

Optimal **S**yntenic **L**ayout of unfinished assemblies

Whole Genome Comparison: Project Presentations F. Heeger, M. Homilius, I. Kel, S. Krakau, S. Specovius, J. Wiedenhoeft

 Maximize no. of extended local diagonals

- Maximize no. of extended local diagonals
- permute and flip contigs of assembly A

- Maximize no. of extended local diagonals
- permute and flip contigs of assembly A

- Maximize no. of extended local diagonals
- permute and flip contigs of assembly A
- switch roles of A and B

- Maximize no. of extended local diagonals
- permute and flip contigs of assembly A
- switch roles of A and B

Independency in constructing the layouts of A and B !

The OSL Problem

Basics

Assemblies

$$A = (a_1, \dots, a_p)$$
$$B = (b_1, \dots, b_q)$$

The OSL Problem

Basics

Layout

Local diagonal extension c and c' form a *local diagonal extension* iff $y \sim y'$ and o = o'

Layout

- Assemble a set of reads with two different Assemblers

- Assemble a set of reads with two different Assemblers
 - Reads of Chromosom 21
 - Assembler: Mira and Celera (WGS)

- Assemble a set of reads with two different Assemblers
 - Reads of Chromosom 21
 - Assembler: Mira and Celera (WGS)

Problems:

• WGS Assembler doesn't work with given reads

Plan B:

 \downarrow

- Take given sequence of chr. 21
- Create artificial contigs

Create artificial contigs:

Seq. Chr. 21

Assembly A

Assembly B

Whole Genome Comparison: Project Presentations F. Heeger, M. Homilius, I. Kel, S. Krakau, S. Specovius, J. Wiedenhoeft

Create artificial contigs:

Seq. Chr. 21

Assemblies are from the same sequence

Megablast

Whole Genome Comparison: Project Presentations F. Heeger, M. Homilius, I. Kel, S. Krakau, S. Specovius, J. Wiedenhoeft

OSLay is the implementation of the OSL algorithm.

Input:

- target assembly
- reference assembly
- matches (e.g. BLAST)

Output:

- original layout
- new layout

Problem:

- Input too large for OSLay
- \bullet Chr. 21 \sim 34 MB

 \downarrow

Plan B:

• segment of 210 KB

- Assembly A: sequence divided by 100
- Assembly B: sequence divided by 19

Whole Genome Comparison: Project Presentations

Whole Genome Comparison: Project Presentations

Whole Genome Comparison: Project Presentations

False connections:

Whole Genome Comparison: Project Presentations

Whole Genome Comparison: Project Presentations

Whole Genome Comparison: Project Presentations

Whole Genome Comparison: Project Presentations

Create contigs with random length:

- Assembly A: lengths between 500 and 5000 bp (\sim 100 contigs)
- Assembly B: lengths between 1000 and 200000 bp (\sim 20 contigs)

Whole Genome Comparison: Project Presentations

Whole Genome Comparison: Project Presentations

Discussion

- Works only with similar sequences
- But: Contig borders of Assemblies should be different
- Just for small genomes

References

Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Comparative, N., Program, S., Green, E. D., Sidow, A., and Batzoglou, S. (2003a). LAGAN and Multi-LAGAN : Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA Outline of Algorithms.

Genome Research, (Taylor 1988):721-731.

Brudno, M., Malde, S., Poliakov, A., Do, C., Couronne, O., Dubchak, I., and Batzoglou, S. (2003b). Glocal alignment: Finding rearrangements during alignment. *Bioinformatics*, 19(Suppl 1):i54.

Parker, D. S. and Lee, C. J. (2003).

Multiple Partial Order Alignment as a Graph Problem. Science (New York, N.Y.).

Pevzner, P. A., Tang, H., and Tesler, G. (2004).

De novo repeat classification and fragment assembly. Genome Research, 14(9):1786–96.

Raphael, B., Zhi, D., Tang, H., and Pevzner, P. (2004).

A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome research, 14(11):2336–46.