Multiple Genome Alighment

This exposition is based on:

1. Michael Hohl, Stefan Kurtz, Enno Ohlebusch: Efficient multiple genome align-
ment, Bioinformatics, vol. 18, suppl. 1, 2002, S312-S320.

2. Documentation of the MGA tool:
http://bibiserv.techfak.uni-bielefeld.de/mga/doc/

3. For the chaining problem, see e. g. Dan Gusfield: Algorithms on Strings, Trees,
and Sequences. Computer Science and Computational Biology. Cambridge
University Press, Cambridge, 1997. Section 13.3.

We will present the algorithms used in the MGA tool for multiple sequence align-
ment.

10000

Introduction

Algorithms for multiple sequence alignment are generally based on the following
principles:

1. lterative pairwise alignment (ClustalW, T-Coffee,...)

lteratively, in a tree-like fashion, two multiple alignments for two disjoint subsets
of sequences are merged into a single multiple alignment for the union of these
subsets. (+ many extra heuristics)

However, this does not scale to genomic size.

2. Anchor-based multiple alignment (MUMmer, MGA)

MGA uses stretches of identical bases occuring in all input sequences to “an-
chor” the multiple alignment.

This is particularly efficient if the genomic sequences are fairly similar.

10001

Outline of the MGA algorithm

. Find a set of multiple exact matches. The MGA algorithm uses multiMEMSs (to
be defined below).

. Select an optimal chain of matches among all matches found. The multiple
alignment is anchored at these matches, that is, the chained matches are con-
sidered aligned.

. Close the gaps between the chained matches using recursive calls of the same
algorithm (but with weaker parameters for anchors).
. The remaining gaps are:

(a) handed over to another alignment tool (e. g., ClustalW), if they are “short”,
or

(b) left open, if they are “long”.

10002

Maximal Multiple Exact Matches

We are given k > 2 genome-sized sequences Gy, ..., Gx_4. Characters are in-
dexed from O:

G = G[0]G[1]...G[n—1]=G[0..n—1], |G| =n.

A multiple exact matchis a (k+1)-tuple (/, pg, -.- , Px_1) such that the same substring
of length / starts at position pg in genome Gg, forall g € [0 .. kK — 1]:

e />0
o Vq: pgel0.. \G,H\—/]

* Vq,q": Gqlpg -- pg+I—1] = Gglpy -- Po+1—1]

10003

Example — MultiMEMs

Here is a small example:

0 1 2 3 4 12
Gp: a c g a c a t agggacgococctc abd

21 25 32 35
Gi: t g at c g ctat cc g acgaaat t t$

44 45 29
Go: t ¢c gt t g agtagawgacocgoctcahb

66 78
G3: a ¢c ¢t c c acaatgocgt céss

The string positions are shown with respect to the concatenated string
S = Gp$9G1$1..-8x_oGk_1, which will be used later. In this example,
(2, 12, (82 — 21), (45 —44), (78 —66)) = (2,12,11,1,12) is a multiple exact
match. (Can it be extended to the left or to the right?)

10004

MultiMEMs (3)

A multiple exact match (/, pg, ..., px_1) is left maximal if it cannot be extended to the
left, that means one of these two conditions is true:

e dqg: pg=0,or

e g, q/: Gq[Pq — 1] #Gq’[pq’ —1].

10005

MultiMEMs

A multiple exact match (/, pg, ..., px_1) 1s right maximal if it cannot be extended to
the right, that means one of the following two conditions is true:

e dqg: pg+1=|Ggl, or
e 39,9 Gglpg + 1 # Gylpg +11 -

A multiple exact match is maximal if it is left maximal and right maximal. A maximal
multiple exact match is called a multiMEM.

(For k = 2 multiMEMs have been called MEM = maximal exact match).

10006

Understanding MultiMEMs

The maximality of multiMEMs only means that we cannot extend it to the left or to
the right by adding whole columns in a multiple alignment. Indeed, the following /s
a multiMEM:

t at g ac g c g t t g

c ¢ a c g c g t g

... although the matched positions are “contained” in a much larger multiMEM:

t a t g a c g c g t t g

c c ac g c g t g

10007

Some notation

The algorithm uses the concatenation of all genomes, separated by special charac-
ters.

Let $p, ..., $,_1 be new symbols, not contained in the alphabet %
Let S = Go$oG1$1 ---$k—26k—1 and n = |S|

Let S; := S[i .. n — 1]$x_1 denote the i-th suffix of S$,_ 1.

10008

Some more notation...

Next we define a kind of “coordinate system” on S.
Let {g denote the starting position of Gg in S, and t := n+ 1.

Let o(/) := q if the i-th letter of S belongs to Gg, that is, tq < i < tg,4 — 1, and
undefined otherwise.

Let o(/) := i — {,(; be the relative position of / in the genome G, ;.
These definitions are made such that

Gqlj] = S[iq +/]
and
S[i] = G, (j)le(i]-

10009

Even more notation... g

Let Pu(q) denote the set of indices 7/ such that u is a prefix of S; and o(/) = g, that
means the set of all starting positions of u in the specific genome Gg.
Look at this part of the previous example:

44 45 59
Go: t ¢c gt t g agt agawgacocgoectca §

Here we have tr = 44, 0(59) = 2, 9(59) = 59 — 44 = 15, and Pcg(2) = {45, 59}.

10010

Finding MultiMEMs

So how can we find multiMEMs?

MGA uses a suffix tree T for S$,_ 1, which can be computed in O(n) time. (Actually,
the real implementation uses a suffix array, but here we will explain the algorithm
using suffix trees.)

The nodes of the suffix tree T will be denoted with a bar, e.g. U, where u is the
string which is the concatenation of the edge labels on the path from the root of T
to 4. (Thus u is the path label of u.)

The leaves of T are the nodes S(i), corresponding to the suffixes of S$_1.

10011

Finding MultiMEMs

Now we show how to compute the position sets Py(q). The suffix tree T is traversed
in DFS order starting from the root = ¢.

We write U — w if there is an edge from u to w in T directed away from the root.
(This implies |u| < |w|.) An edge U — w is processed only after all edges in the
subtree below w have been processed. (That is, we perform a bottom-up traversal.)

The definition of “—” implies Py(q) = U{Pw(q) : U — w}.

10012

Finding MultiMEMs

10013

Finding MultiMEMs

The leaf case is u = S(i). There we have

{it ifo(i)=q,
0 otherwise.

Pu(q) = {

Thus we know how to initiate the bottom-up traversal.

10014

Finding MultiMEMs

For branching nodes, we compute a series of position sets
P,}(q),...,P{,(q),...,Pu(q) by ‘processing” the outgoing edges one after an-
other.

Here j is the number of successor edges we have processed so far. The sets PL(q)
are intermediate results. The last one, Py(Qq), is the result which is handed on to the
parent node.

Let U — w be the next edge to be processed. We compute P{,+1 by combining P{,(q)
and Pw(q). At the same time, we detect multiMEMs and output them on the ily.

10015

Finding MultiMEMs
We enumerate all “candidate” (k + 1)-tuples (|ul, pg, --- s Px—_1) such that:
1. ¥q: pg € PL(q) U Pu(q)
2. 3q: pq € Pli(q)

3. 3q9: pq € Pw(q)

10016

Finding MultiMEMs

We enumerate all “candidate” (k + 1)-tuples (|ul, pg, --- s Px—_1) such that:

1. Vq: pg € PL(Q) U Pw(q)
2. 39: pq € P(q)

3. 3q9: pq € Pw(q)

Why?

10017

Finding MultiMEMs

We enumerate all “candidate” (k + 1)-tuples (|ul, pg, --- s Px—_1) such that:

1. Vq: pg € PL(Q) U Pw(q)
2. 39: pq € P(q)

3. 3q9: pq € Pw(q)

=- Condition (1.) implies that (|u|, o(pg); --- , 0(Px—1)) IS @ multiple exact match.

10018

Finding MultiMEMs ()

We enumerate all “candidate” (k + 1)-tuples (|ul, pg, --- s Px—_1) such that:

1. Vq: pg € PL(Q) U Pw(q)
2. 39: pq € P(q)

3. 3q9: pq € Pw(q)

= Conditions (2.) and (3.) guarantee that not all positions pq are taken exclusively
from P/u(q) or Pw(q). At least two of them belong to different subtrees of u.

Hence u is the consensus of a right maximal multiple exact match
(lul, o(Pg); --- » 2(PK—1))-

10019

Finding MultiMEMs (1)
We enumerate all “candidate” (k + 1)-tuples (|ul, pg, --- s Px—_1) such that:
1. ¥q: pg € PL(q) U Pu(q)
2. 3q: pq € Pli(q)

3. 3q9: pq € Pw(q)

=- To enforce left maximality, we reject a tuple (|u|, e(Pg), --- , o(Px_1)) if it turns out
that pg > 0 and S[pg — 1] = ... = S[px_1 — 1]

Otherwise it is a (left and right) maximal multiple exact match, and we output it on
the fly.

10020

Finding MultiMEMs 1)

When all multiMEMSs for 4 — v have been written out, we set P{,+1(q) = P{,(q) U
Pw(q) and proceed to the next child edge. After all children of u have been pro-
cessed, we go on to the parent of .

So far we have seen that all outputs are multiMEMs.

Conversely, every multiMEM is output exactly once: Let u be its consensus. The
point of time when a multiMEM is output comes, when the last successor edge
u — w is processed such that w is an extension of the multiMEM consensus u to
the right in one of the genomes.

Thus when the algorithms leaves u, all multiMEMSs for the string u have been output
exactly once.

This proves the correctness of the algorithm.

10021

Running Time and Space Requirement

Now we estimate the running time and space requirements.

The position sets Py(q) can be implemented as linked lists. This way they can be
merged in constant time. There are O(n) nodes, and each node carries k position
sets. Therefore the total space and time requirement for the position sets is O(kn).

10022

Running Time and Space Requirement

The enumeration of the set of (k+1)-tuples (|u|, pg, --- ; Px_1) takes time proportional
to its size (exercise). Recall that (|ul, o(pg), ---, o(Px_1)) is always a right maximal
multiple exact match due to conditions (1.)—(3.). Hence the running time of the
enumeration is O(r), where r denotes the number of right maximal multiple exact
matches. The total running time is O(kn + r).

10023

Running Time and Space Requirement

However we can avoid first generating the right maximal multiple exact matches
which are not left maximal and then rejecting them afterwards. Instead we can use
a more clever enumeration which produces multiMEMSs directly.

The idea is to partition the position sets Py(q) further into subsets Py(q, x) according
to the “left” character x immediately preceeding the occurences of u in Gg.

This leads to a total running time of O(#Xkn + m), where m is the number of multi-
MEMSs. The details shall be worked out in the exercises.

10024

Finding an Optimal Chain of MultiMEMs

We have found a list of multiMEMSs. Naturally, very short MultiMEMSs are put aside
from consideration. The next step in MGA is to find an optimal set of multiMEMSs to
be used as anchors.

10025

Finding an Optimal Chain of MultiMEMs

This is, however, instance of the “chaining problem”:

",

10026

Finding an Optimal Chain of MURIMEMs

The multiMEMSs (in the figure, we have only two sequences) become vertices of a
graph, and an edge is drawn between two multiMEMs whenever they can both be
present in a multiple alignment. The edge is directed from left to right with respect
to the aligned sequences. For multiMEMs

M=(l,pg,-sPk_1), M =0y sPy_1)
we have
(M —M)eE <> Vq:pg+!<pj.

Moreover we add artificial source and sink vertices at the left and the right end of
the sequences. (One could think of them as multiMEMSs of length 0.)

Every vertex has a weight corresponding to the length of the multiMEM. The edges
are unweighted.

Since the graph G = (V, E) is directed and acyclic, a heaviest source-sink path can
be found by dynamic programming (using a topological ordering of the graph) in

O(V + E) time.
10027

Finding an Optimal Chain of MultiMEMs

Deciding whether two multiMEMs are consistent with an alignment takes O(k) time
for k sequences. Thus the running time is dominated by the construction of the
graph, which is O(km?) for m multiMEMs.

Note, however that an edge is never used in the heaviest directed source-sink path
If it is possible to put another vertex in between.

Moreover one can exploit the geometric nature of the problem. An algorithm by
Myers and Miller (1995) for the chaining problem runs in O(mlogk m) time and
O(kmlogk_1 m) space, and recently this was further improved by Abouelhoda and
Ohlebusch (2003, CPM) to O(nlog®—2 nlog log n) time and O(nlogX—2 n) space.

10028

Closing the Gaps

In the third phase, MGA closes the gaps between the anchors.

This is done by recursively applying the same method a certain number of times,
but each time with a lower threshold for the multiMEM size. The gaps that are still
left over are handled as follows:

e “Short” gaps are closed by an external multiple sequence alignment program
(e.g., ClustalW — but other choices are possible).

e “Long” gaps remain unaligned. This is a “feature”, not a “bug”:

‘ILeaving long gaps open] makes sense biologically: since there are no
matches exceeding the length threshold, there is no detectable similarity and
the gaps are not forced into an alignment. This way, mga can cope with long in-
sertions, deletions, etc. [Note (cg): but not with reversals!], retaining its overall
efficiency.”

(Cited from http://bibiserv.techfak.uni-bielefeld.de/mga/doc/)

10029

ClustalW outline

We close with an outline of the ClustalW algorithm:

1. All pairs of sequences are aligned separately in order to calculate a distance
matrix giving the divergence of each pair of sequences.

2. A guide tree is calculated from the distance matrix.

3. The sequences are progressively aligned according to the branching order in
the guide tree.

Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson, CLUSTAL W: improving the sensi-
tivity of progressive multiple sequence alignment through sequence weighting, position specific gap
penalties and weight matrix choice, Nucleic Acids Research, Vol. 22, No. 22, p. 4673—4680, 1994.

(See also the ClustalX program, a convenient graphical user interface for ClustalW)

10030

