Whole Genome Comparison: Colinear Alignment

Felix Heeger, Max Homilius, Ivan Kel, Sabrina Krakau, Svenja Specovius, John Wiedenhoeft

May 10, 2010

Whole Genome Comparison: Colinear Alignment

Colinear Alignment: Containing elements that are arranged in the same linear order in all sequences.

colinear alignment

Non-Colinear Alignment: Containing elements that are arranged in some non-linear order.

non-colinear alignment

Why use colinear alignment at all?

Why use colinear alignment at all? \Rightarrow It's faster! BUT Careful!

Why use colinear alignment at all? \Rightarrow It's faster! BUT Careful!

Watch out for:

- Translocations
- Duplications
- Inversions

Alignment Graph of Single Characters

• sequences are represented by (directed) chains of nodes

- sequences are represented by (directed) chains of nodes
- matches are represented by (undirected) edges

- sequences are represented by (directed) chains of nodes
- matches are represented by (undirected) edges
- some edges may be inconsistent

- sequences are represented by (directed) chains of nodes
- matches are represented by (undirected) edges
- some edges may be inconsistent
- *trace*: set of (consistent) realized edges in the alignment graph

Alignment Graph of Single Characters

- sequences are represented by (directed) chains of nodes
- matches are represented by (undirected) edges
- some edges may be inconsistent
- *trace*: set of (consistent) realized edges in the alignment graph
- finding the optimal set of consistent edges: Maximum-weight trace problem (MWT)

Whole Genome Comparison: Colinear Alignment

Alignment Graph of "Segments"

Alignment Graph of "Segments"

• combine consecutive matching characters to a segment

Alignment Graph of "Segments"

• combine consecutive matching characters to a segment

• reduction of edges \longrightarrow smaller input

exact:

- integer linear programming
- n-dimensional dynamic programming

 \longrightarrow NP-hard

exact:

- integer linear programming
- n-dimensional dynamic programming

 $\longrightarrow \mathsf{NP}\text{-hard}$

heuristical:

- progressive alignment
 - \longrightarrow problem of local optima

Consistency

- re-scoring of pairwise alignment to integrate information from other alignments
- use of individual match scores for progressive alignment

Consistency

Consistency

• find a path "through" one other alignment to the matching node

Consistency

• find a path "through" one other alignment to the matching node

Consistency

- find a path "through" one other alignment to the matching node
- the triplet of alignments is then consistent for this match

```
for all nodes n do

for all pairs of nodes i, j adjacent to n do

if i and j adjacent then

w(e_{ij})+=\min(w(e_{ni}),w(e_{nj}))

else

add e_{ij} to E

w(e_{ij})=\min(w(e_{ni}),w(e_{nj}))

end if

end for

end for
```

Segment Based Multiple Sequence Alignment

using consistency

Whole Genome Comparison: Colinear Alignment

• retrieving the segments from the alignment graph takes too long

- retrieving the segments from the alignment graph takes too long
- we can get approximate segments by local alignment methods

- retrieving the segments from the alignment graph takes too long
- we can get approximate segments by local alignment methods
 - dynamic programming (for short sequences)

- retrieving the segments from the alignment graph takes too long
- we can get approximate segments by local alignment methods
 - dynamic programming (for short sequences)
 - Suffixarrays (for exact matches)

- retrieving the segments from the alignment graph takes too long
- we can get approximate segments by local alignment methods
 - dynamic programming (for short sequences)
 - Suffixarrays (for exact matches)
 - Blast

Whole Genome Comparison: Colinear Alignment

• combine each matched region on one sequence to one node

Whole Genome Comparison: Colinear Alignment

- combine each matched region on one sequence to one node
- connect the matched regions on different sequences with an edge

• combine each matched region on one sequence to one node

• connect the matched regions on different sequences with an edge

Overlaping Segments

Whole Genome Comparison: Colinear Alignment

•
$$S = \{S^0, S^1, \dots, S^{n-1}\}$$
 a set of *n* sequences

•
$$S = \{S^0, S^1, \dots, S^{n-1}\}$$
 a set of *n* sequences
• $S_{u,v}^i = s_u^i s_{u+1}^i \dots s_{v-1}^i$ a segment in sequence *i*

•
$$S = \{S^0, S^1, \dots, S^{n-1}\}$$
 a set of *n* sequences
• $S_{u,v}^i = s_u^i s_{u+1}^i \dots s_{v-1}^i$ a segment in sequence *i*
• $M = \left(S_{u,v}^i, S_{x,y}^j\right)$ a segment match

Refinement

 $\mathcal{M}_* = \left\{ M^0_*, M^1_*, \dots, M^{m'-1}_* \right\} \text{ is a refinement of } \mathcal{M}_* \text{ if every segment } S \in \mathcal{M} \text{ is tiled by a subset of } \mathcal{M}_*$

Refinement

 $\mathcal{M}_* = \left\{ M^0_*, M^1_*, \dots, M^{m'-1}_* \right\} \text{ is a refinement of } \mathcal{M}_* \text{ if every segment } S \in \mathcal{M} \text{ is tiled by a subset of } \mathcal{M}_*$

Resolved Refinement

a refinement \mathcal{M}_* is *resolved*, if every two segments S^i and S^j in \mathcal{M}_* are either identical or disjoint, i.e. they do not partially overlap

Refinement

 $\mathcal{M}_* = \left\{ M^0_*, M^1_*, \dots, M^{m'-1}_* \right\} \text{ is a refinement of } \mathcal{M}_* \text{ if every segment } S \in \mathcal{M} \text{ is tiled by a subset of } \mathcal{M}_*$

Resolved Refinement

a refinement \mathcal{M}_* is *resolved*, if every two segments S^i and S^j in \mathcal{M}_* are either identical or disjoint, i.e. they do not partially overlap

Minimal Resolved Refinement

a resolved refinement of minimal cardinality is a *minimal resolved* refinement

Input/Output

Input

a set $\ensuremath{\mathcal{M}}$ of segment matches

Output

a set $\mathcal{M}^*,$ which is the minimal resolved refinement of $\mathcal M$

Pseudocode

$$\begin{array}{l} \mbox{def cut}(a):\\ \mathcal{L} = \left\{ M^i = \left(S^i_{u,v}, S^j_{x,y} \right) | u < a < v \right\} \\ \mbox{for } \mathcal{L} \in \mathcal{L}:\\ b = \mbox{match postion of } a \mbox{ given by } L \\ \mbox{if } b \notin V^j:\\ \mbox{insert } b \mbox{ into } V^j \\ \mbox{insert edge } (i,a,b) \mbox{ into } E \\ \mbox{cut}(b) \\ \mbox{def refine}(\mathcal{M}):\\ V^i = \mbox{boundary positions of segments in sequence } i \\ \mbox{for } M^i = \left(S^i_{u,v}, S^j_{x,y} \right) \in \mathcal{M}:\\ \mbox{insert edge } (i,u,x) \mbox{ and } (i,v,y) \mbox{ into } E \\ \mbox{for boundary position } w \mbox{ of } M^i:\\ \mbox{cut}(w) \\ \mbox{lexicographically order } E \end{array}$$

Whole Genome Comparison: Colinear Alignment

- build a n-partite graph with node sets V^0, \ldots, V^{n-1} and edges *E* (with code above)
- the Graph (V, E) defines "cuts" in \mathcal{M}
- consecutive pairs of edges (i,a,b) and (j,x,y) in E define a segment match in M_{*}, if i = j

Example

$$egin{aligned} M^1 &= (A_{4,9}, B_{4,9}) \ M^2 &= (A_{7,11}, B_{11,15}) \ M^3 &= (B_{1,6}, C_{1,6}) \end{aligned}$$

Whole Genome Comparison: Colinear Alignment

Halpern, A. L., Huson, D. H., and Reinert, K. (2002). *Algorithms in Bioinformatics*, chapter Segment Match Refinement and Applications, pages 126–139. Springer Berlin / Heidelberg.

Notredame, C., Higgins, D. G., and Heringa, J. (2000).

T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302(1):205–217.

Rausch, T., Emde, A.-K., Weese, D., Döring, A., Notredame, C., and Reinert, K. (2008). Segment-based multiple sequence alignment. *Bioinformatics*, 24(16):i187–i192.

Reinert, K. (2002).

Segment match refinement and applications.

Reinert, K. (2009).

Multiple match refinement and t-coffee.