
Chaining
This exposition was developed by Clemens Gröpl. It is based on the following refer-
ences, which are all suggested reading:

• Mohamed I. Abouelhoda, Enno Ohlebusch: Chaining algorithms for multi-
ple genome comparison, Journal of Discrete Algorithms, 3:321-341, 2005.
[AO05]

• Enno Ohlebusch, Mohamed I. Abouelhoda: Chaining algorithms and applica-
tions in comparative genomics, Handbook of Computational Molecular Biology,
Chapter 15, 2006. [AO06]

• Gene Myers, Webb Miller: Chaining multiple-alignment fragments in sub-
quadratic time, SODA 1995. [MM95]

The work of Ohlebusch and Abouelhoda was originally presented in two conference
papers at CPM03 and WABI03. These are now mostly superseded by the two
articles above.

12000

The chaining problem

Biological sequence analysis often has to deal with sequences of genomic size
which cannot be aligned as a whole in one step. In this situation, an anchor-based
approach can be used. The idea is to construct a (more or less) global alignment
from a collection of local alignments. The small pieces are also called fragment
matches or just fragments. These pieces then have to be chained one after another.
The chaining problem is difficult because no all fragment are compatible with each
other. The general approach is as follows:

1. Compute fragments, i. e. regions in the genomes that are very similar.

2. Compute an optimal global chain of colinear non-overlapping fragments. The
fragments of the chain are the anchors for the alignment.

3. Fill in the gaps by aligning the regions between the anchors.

A variant of the problem (2’.) tries to find a set of local chains instead of one global
chain. We will return to this later.

12001

The chaining problem (2)

Naturally we are also interested in multiple alignments of k genomic sequences. For
the chaining problem, we only care about where each fragment begins and ends in
each of the k sequences.

Each fragment has a weight . The weight could be the length of an exact match, or
another measure of its statistical significance.

The gaps in a chain of fragments need to be scored as well. We will see a number
of scoring schemes for this below.

12002

The chaining problem (3)

Example. To the left, you see a collection of pairwise (k = 2) alignments (top)
and a chained subset of them (bottom). To the right you see a two-dimensional
visualization of the same fragment matches. An arrow indicates that one fragment
can follow another fragment in a chain. (Not all possible arrows are shown.)

12003

The chaining problem

Note that not all pairs of fragments are compatible to each other: The fragments in
the chain have to be collinear and non-overlapping.

• Collinear : The order of the respective segments of the fragments is the same
in both sequences.

• Non-overlapping: Two fragments overlap if their segments overlap in one of the
sequences.

In the pictorial representation of Figure (a), two fragments are collinear if the lines
connecting their segments are non-crossing (for example, the fragments 2 and 3
are collinear, while 1 and 6 are not). Two fragments overlap if their segments over-
lap in one of the genomes (for example, the fragments 1 and 2 are overlapping,
while 2 and 3 are non-overlapping). Figure (b) shows the fragments as rectangles.
Fragments 2, 3, 7 are chained. 0 and t are artificial source and sink nodes.

12004

The chaining problem (2)

Among the many bioinformatics tools solving chaining problems (in some way) are:

• FastA. Fragments are constant-size exact matches. They are found by hashing.

• MUMmer . Fragments are maximal exact matches. They are found using suffix
trees.

• MGA. Fragments are maximal multiple exact matches. They are found using
suffix arrays.

• GLASS. Fragments are exact k-mers.

• DIALIGN. Fragments can have substitutions.

• MultiPipMaker . Fragments can have substitutions and indels.

• . . . (add your favorite genome alignment tool here)

The fragments could also be BLAST hits, or even local chains from an earlier invo-
cation of the algorithm.

12005

Graph-theoretic formulation

Clearly the chaining problem can be stated in graph-theoretic terms. The fragments
correspond to vertices and we have an edge whenever two fragments are com-
patible, i. e. they can be combined in a chain. Thus we obtain a weighted acyclic
directed graph. The goal is to find a directed path of maximum weight. A simple
dynamic programming requires O(V + E) time and space.

12006

Graph-theoretic formulation (2)

Example.

· ·
· i · · · · · · · · · · · · · · · · · · ·
· · i · · · · g · · · · · · · · · · · · ·
· · · · · · · · g · · · · · · · · · · · ·
· · · · · · · · · g · · · · · · · · · · ·
· · · · · · d · · · · · a · · · · · · · ·
· · c · · · · d · · · · · a · · · · · · ·
· · · c · · · · · · · · · · a · · · · · ·
· · · · · · · · · · · h · · · a · · · · ·
· · · · · k · · · · · · h · · · · · · · ·
· b · · · · k · · · · · · h · · · · · · ·
· · b · · · · · · · f · · · h · · · · · ·
· · · b · · · · · · · f · · · · · j · · ·
· · · · b · · · · · · · f · · e · · j · ·
· · · · · b · · · · · · · · · · e · · j ·
· · · · · · b · · · · · · · · · · · · · ·
· ·

a / 8

j / 6

-3

b / 12c / 4

h / 8

-7k / 4

-1

d / 4

f / 6

-4 -3

e / 4

g / 6

-2 -6 -3

-1-2

i / 4

-3

-3

Scoring scheme: For simplicity, each “letter” scores 2 and all other columns of the
corresponding alignment score −1 (diagonal “shortcuts” are allowed).

12007

Graph-theoretic formulation (3)

The graph theoretic approach is intuitive and will lead us to the final solution. But
some essential issues are not settled yet:

• How should the edge set be constructed? Of course we can enumerate over
all pairs of vertices, but this will take Ω(V 2) time, which is prohibitive in many
real-world cases.

• Even worse, it is easy to construct instances where the size of the edge set is
indeed Ω(V 2). It may help to remove “transitive” edges which cannot be part
of an optimal solution, but this does not improve the worst-case asymptotic.
(Exercise: find such an example.)

• The obvious dynamic programming algorithm does not fully exploit the geomet-
ric nature of the problem. It works on every weighted acyclic directed graph,
but our graph is more restricted.

The good news is that we need not construct the edge set explicitly . Instead we will
traverse the vertices in an appropriate order and use some auxiliary data structures
and still carry out essentially the same DP recursion.

12008

Notation

Before we can get more concrete, we need to introduce some notation.

• For 1 ≤ i ≤ k , let Si = Si [1..ni] be a sequence of length |Si | = ni .

• Si [l ..h] denotes the substring of Si starting at position l and ending at position
h. (Both margins are included.)

• A fragment f consists of two k -tuples beg(f) = (l1, l2, ... , lk) and end(f) =
(h1, h2, ... , hk) such that the strings S1[l1..h1], S2[l2..h2],. . . ,Sk [lk ..hk] are simi-
lar in some sense.

• A fragment f of k sequences can be represented by a hyper-rectangle in
Rk with two extremal corner points beg(f) and end(f). We write R(p, q) :=
[p1, q1] × ... × [pk , qk] for the hyper-rectangle spanned by p = (p1, ... , pk) and
q = (q1, ... , qk), where p < q, i. e., pi < qi for all 1 ≤ i ≤ k . Thus a fragment
f is represented by hyper-rectangle R(beg(f), end(f)). Each coordinate of the
corners is a nonnegative integer.

• Consequently, the number of sequences k is also called the dimension.
12009

Notation (2)

• Each fragment f has a weight f .weight ∈ R.

• We will sometimes identify beg(f) or end(f) with f .

• For ease of presentation, we introduce artificial fragments of weight zero. We
let 0 := (0, ... , 0) and t := (n1+1, ... , nk +1). We let beg(0) := ⊥ (where⊥means
“undefined”) and end(0) := (0, ... , 0). Analogously, beg(t) := (n1 + 1, ... , nk + 1)
and end(t) := ⊥.

• The coordinates of a point p ∈ Rk will be accessed as p.x1,. . . ,p.xk . If k = 2,
we will also write them as p.x , p.y .

12010

Notation (3)

Definition. We define a binary relation� for fragments by

f � f ′ ⇐⇒ ∀i : end(f).xi < beg(f ′).xi

In this case, we say that f precedes f ′. In the graph model, we have an arrow from
f to f ′.

Note that 0� f � t for all fragments f with f 6= 0, f 6= t, as required.

12011

Notation

Definition.

• A chain (of collinear, non-crossing fragments) is a sequence of fragments C =
(f1, ... , f`) such that fi � fi+1 for all 1 ≤ i < `.

• The score of C is

score(C) :=
∑̀
i=1

fi .weight−
`−1∑
i=1

g(fi+1, fi) ,

where g(fi+1, fi) is the gap cost for connecting fragment fi to fi+1 in the chain.

The global fragment chaining problem is:

Given a set of weighted fragments and a gap cost function, determine a
chain of maximum score starting at 0 and ending at t.

12012

The basic algorithm

For each fragment f , denote by f .score the maximum score of all chains starting at
0 and ending at f .

Clearly this score satisfies the following recurrence:

f ′.score = f ′.weight + max
{

f .score− g(f ′, f)
∣∣ f � f ′

}
.

The simple dynamic programming algorithm for the global fragment chaining prob-
lem processes the fragments in a topological ordering (e. g., the lexicographic or-
dering). This is to ensure that when f ′.score is going to be computed, all values
f .score, where f � f ′, have already been determined.

The initialization is

0.score := 0 .

And the value we are finally interested in is t.score.

The chain itself can be found by backtracing, as usual.

12013

Range maximum queries

So how are we going to improve upon this straightforward solution? The key is
to compute the ‘max’ in the DP recursion more efficiently, without ‘generating’ all
the edges of the graph. Range (maximum) queries are a fundamental operation in
computational geometry, and efficient data structures have been designed for them.

12014

Range maximum queries (2)

Definition.

• Let S ⊆ Rk be a set of points and let p, q ∈ Rk , p < q be the corners of a
rectangle R(p, q). Then the range query RQ(p, q) asks for all points of S that
lie in the hyper-rectangle R(p, q).

• Assume further that the points in S have a score associated with them. Then
the range maximum query RMQ(p, q) asks for a point of maximum score in
R(p, q).

Observation. Consider the special case when the gap cost function g is always
zero. Let ~1 := (1, ... , 1). The recurrence of the basic algorithm implies:

If RMQ(0, beg(f ′)−~1) returns the end point of fragment f , then f ′.score = f ′.weight+
f .score.

In other words, range maximum queries are what we need in the DP recursion!

12015

Global chaining without gap costs

In the following, we will first consider the case when all gap costs are zero. After
that we will see how the algorithm can be modified to deal with (certain) gap cost
functions.

The algorithm uses the line-sweep paradigm to construct an optimal chain. It pro-
cesses the begin and end points of the fragments in ascending order of their x1
coordinate. One can think of the traversal as a line (actually, a hyper-plane of di-
mension k−1) that “sweeps” the points with respect to their x1 coordinate.∗ If a point
has already been scanned by the sweeping line, it is said to be active, otherwise it
is said to be inactive.

Let s be the point that is currently being scanned. The x1 coordinates of the active
points are less than or equal to that of s. By the preceding observation, if s is the
begin of fragment f ′, then an optimal chain ending at f ′ can be found by a range
maximum query over the active points. Otherwise, s is the end of a fragment and
can be activated . Note that the RMQ need not take the first coordinate x1 into
account because of the sweeping order.
∗engl. “to sweep” = dt. “fegen”

12016

Global chaining without gap costs (2)

The algorithm uses a semi-dynamic data structure D that stores the end points of
the fragments and supports two operations:

1. Activation

2. Range maximum queries over active points.

It is called semi-dynamic because we can only ‘activate’ but not ‘inactivate’ points.
Abouelhoda and Ohlebusch [AO05] have designed such a data structure that sup-
ports RMQs with activation in O(n logd−1 n log log n) time and O(n logd−1 n) space
for n points in d dimensions.

Since d = k −1 in the algorithm, their algorithm solves the global fragment chaining
problem in O(n logk−2 n log log n) time and O(n logk−2 n) space. (This holds for
k ≥ 3; for k = 2 the running time is dominated by the initial sorting.)

The correctness of the following algorithm is immediate.

12017

Global chaining without gap costs (3)

Algorithm. (k -dimensional chaining of n fragments)
1 // Data structure D is (k − 1)-dimensional, x1 is ignored.
2 // π denotes the projection.
3 points := begin and end points of all fragments (including 0 and t)
4 sort points by x1
5 store all end points of fragments as inactive in D
6 for i = 1 to 2n + 2 do
7 if points[i] == beg(f ′) for some fragment f ′

8 then
9 q := RMQ(0,π(points[i]− ~1))

10 f := fragment with end(f) == q and maximum score
11 f ′.prec := f
12 f ′.score := f ′.weight + f .score
13 else // points[i] == end(f ′) for some fragment f ′

14 activate(π(points[i])) in D
15 fi
16 od

12018

Global chaining without gap costs (4)

The details of the data structure D are fairly complicated. It combines range trees
with fractional cascading and van Emde Boas priority queues (with Johnson’s im-
provement) . . . enough topics for more than another lecture! We therefore skip this
part of [AO05, AO06] :-(Note that the actual implementation of Abouelhoda uses
KD-trees, which are non-optimal with respect to the running times but much easier
to implement. (Explained on the blackboard.)

At this point, we have an algorithm for the global chaining problem without gap costs.
Next we show how to modify the algorithm to take certain gap cost functions into
account.

12019

Incorporating L1 gap costs

Definition. For two points p, q ∈ Rk , the L1 distance is defined by

d1(p, q) :=
k∑

i=1
|p.xi − q.xi | .

Definition. The L1 gap function is

g1(f ′, f) := d1(beg(f ′), end(f)) for f � f ′.

The effect of the L1 gap function is that all characters between f and f ′ are scored
as indels (not a very realistic assumption, but maybe not so bad either):

ACCXXXX---AGG

ACC----YYYAGG

In this example ACC and AGG are the anchors of the alignment and X and Y are
anonymous characters.

12020

Incorporating L1 gap costs (2)

The problem with gap costs is that a range maximum query does not immediately
take the gap cost g(f ′, f) into account when f ′.score is computed.

But we can express the gap costs implicitly in terms of the weight information at-
tached to the points. Let us define the geometric cost of a fragment f as

gc(f) := d1(t, end(f)) .

Since t is fixed, the value gc(f) is known in advance for every fragment f . Moreover,
we have the following lemma:

Lemma 1. Let f , f̃ , and f ′ be fragments such that f � f ′ and f̃ � f ′. Then

f̃ .score− g1(f ′, f̃) > f .score− g1(f ′, f) ⇐⇒ f̃ .score− gc(f̃) > f .score− gc(f) .

Proof: Exercise. (See figure on blackboard.)

12021

Incorporating L1 gap costs (3)

Therefore we need only two slight modifications to the algorithm in order to take L1
gap costs into account.

1. Replace the statement

f ′.score := f ′.weight + f .score

with

f ′.score := f ′.weight + f .score− g1(f ′, f) .

2. If points[i] is the end point of f ′, then it is activated with priority

f ′.priority := f ′.score− gc(f ′) .

Thus the RMQs will return a point of maximum priority instead of a point of
maximum score.

12022

Incorporating L1 gap costs (4)

Then we have:

Lemma 2. If RMQ(0, beg(f ′) − ~1) returns the end point of a fragment f̃ , then we
have

f̃ .score− g1(f ′, f̃) = max{ f .score− g1(f ′, f) | f � f ′ } .

Proof: Application of the preceding lemma.

Therefore the modified algorithm is correct.

12023

Incorporating L1 gap costs (5)

Algorithm. (k -dimensional chaining of n fragments using L1 gap cost)
1 // Data structure D is (k − 1)-dimensional, x1 is ignored.
2 // π denotes the projection.
3 points := begin and end points of all fragments (including 0 and t)
4 sort points by x1
5 store all end points of fragments as inactive in D
6 for i = 1 to 2n + 2 do
7 if points[i] == beg(f ′) for some fragment f ′

8 then
9 q := RMQ(0,π(points[i]− ~1))

10 f := fragment with end(f) == q and maximum score
11 f ′.prec := f
12 f ′.score := f ′.weight + f .score− g1(f ′, f)
13 else // points[i] == end(f ′) for some fragment f ′

14 f ′.priority := f ′.score− gc(f ′)
15 activate(π(points[i])) in D with priority f ′.priority
16 fi
17 od

12024

Incorporating sum-of-pairs gap costs

The L1 gap cost model is not very realistic. An alternative scoring model was intro-
duced by Myers and Miller [MM95]. We consider the case k = 2 first, since the case
k > 2 is rather involved. (The name ‘sum-of-pairs cost’ is a bit misleading, just take
it as a name.)

12025

Incorporating sum-of-pairs gap costs (2)

For two points p, q ∈ Rk , we write

∆xi (p, q) := |p.xi − q.xi |

The sum-of-pairs distance depends on two parameters ε and λ. It is defined (for
k = 2) as

d(p, q) :=

ε∆x2 + λ(∆x1 −∆x2) if ∆x1 ≥ ∆x2

ε∆x1 + λ(∆x2 −∆x1) if ∆x2 ≥ ∆x1

=

λ∆x1 + (ε− λ)∆x2 if ∆x1 ≥ ∆x2

λ∆x2 + (ε− λ)∆x1 if ∆x2 ≥ ∆x1 .

We drop the arguments p, q if they are clear from the context.

12026

Incorporating sum-of-pairs gap costs (3)

Definition. The sum-of-pairs gap function is

g(f ′, f) := d(beg(f ′), end(f)) for f � f ′.

The effect of the sum-of-pairs gap function depends on the parameters ε and λ.

• λ > 0 is the cost of aligning an anonymous character with a gap position in the
other sequence.

• ε > 0 is the cost of aligning two anonymous characters to each other.

For λ = 1 and ε = 2, g coincides with g1, whereas for λ = 1 and ε = 1, we obtain the
L∞ metric: g∞(f ′, f) := d∞(beg(f ′), end(f)), where

d∞(p, q) = max{ |p.xi − q.xi | | 1 ≤ i ≤ k } .

12027

Incorporating sum-of-pairs gap costs (4)

With λ > ε/2 > 0 the characters between two fragments are replaced as long as
possible and the remaining characters are inserted or deleted:

ACCXXXXAGG

ACCYYY-AGG

(Compare this example to the one for the L1 metric.)

Otherwise it would be best to connect fragments entirely by gaps as in the L1 metric.
Thus we require that λ > ε/2.

12028

Incorporating sum-of-pairs gap costs (5)

We need a few definitions in order explain how the score of a fragment f ′ can be
computed.

Let s := beg(f ′). The first quadrant of s consists of all points p ∈ R2 with p.x1 ≤ q.x1
and p.x2 ≤ q.x2.

We subdivide the first quadrant of s into its first and second octant O1, O2. The
points in the first octant O1 satisfy ∆x1 ≥ ∆x2; they are above or on the straight line
x2 = x1 + (s.x2 − s.x1). The points in the second octant satisfy ∆x2 ≥ ∆x1.

Clearly,

f ′.score = f ′.weight + max{v1, v2} ,

where

vi := max{ f .score− g(f ′, f) | f � f ′ and end(f) lies in octant Oi }

for i = 1, 2. Thus we can eliminate the case distinction for g within each octant.

12029

Incorporating sum-of-pairs gap costs (6)

We are not finished yet, since our chaining algorithm relies on RMQs, which work
for orthogonal regions, not octants! But a simple trick can help.

We apply the octant-to-quadrant transformations of Guibas and Stolfi: The trans-
formation T1 : (x1, x2) 7→ (x1 − x2, x2) maps the first octant to the first quadrant.
Similarly, T2 : (x1, x2) 7→ (x1, x2− x1) does the same task for the second octant. By
means of these transformations, we can apply the same techniques as for the L1
metric.

We only need to define the geometric cost gci properly for each octant Oi .

12030

Incorporating sum-of-pairs gap costs (7)

Lemma 3. Let f , f̃ , and f ′ be fragments such that f � f ′ and f̃ � f ′. If end(f) and
end(f̃) lie in the first octant of beg(f ′), then

f̃ .score− g(f ′, f̃) > f .score− g(f ′, f) ⇐⇒ f̃ .score− gc1(f̃) > f .score− gc1(f) ,

where

gc1(f̂) = λ∆x1(t, end(f̂)) + (ε− λ)∆x2(t, end(f̂))

for any fragment f̂ .

Proof: Exercise. (Similar to the preceding one.)

An analogous lemma holds for the second octant.

12031

Incorporating sum-of-pairs gap costs (8)

Due to the octant-to-quadrant transformations, we need to take two different geo-
metric costs gc1, gc2 into account. Consequently, the nodes will also have different
scores with respect to both. To cope with this, we use two data structures D1, D2.
Each Di stores the points of the set { Ti(end(f)) | f is a fragment }. The results of
both RMQs need to be merged. We omit the details.

We still have a line-sweep algorithm, but the data structures Di need to store
two-dimensional points. Thus the algorithm runs in O(n log n log log n) time and
O(n log n) space.

12032

Incorporating sum-of-pairs gap costs (9)

For dimensions k > 2, the sum-of-pairs gap cost is defined for fragments f � f ′ by

gsop(f ′, f) :=
∑

0≤i<j≤k
g(f ′i ,j , fi ,j) ,

where f ′i ,j and fi ,j are the two-dimensional “projections” of the fragments.

The general idea is similar as for k = 2, but now the first hyper-corner of beg(f ′) is
subdivided into k ! hyper-regions.

The resulting algorithm runs in O(k !n logk−1 n log log n) time and O(k !n logk−1 n)
space.

12033

Local chaining

So far we have been searching for an optimal chain starting at 0 and ending at t. If
we remove the restriction that a chain must start at 0 and end at t, we obtain the
local chaining problem.

Definition. The local fragment chaining problem is: Given a set of weighted frag-
ments and a gap cost function, determine a chain of maximum score ≥ 0. Such a
chain will be called an optimal local chain.

12034

Local chaining (2)

Example:

The optimal chain is composed of the fragments 1, 4, and 6. Another significant
local chain consists of the fragments 7 and 8.

12035

Local chaining (3)

Definition. Let

f ′.score := max{ score(C) | C is a chain ending with f ′ }

Definition. A chain C ending with f ′ and satisfying f ′.score = score(C) is called an
optimal chain ending with f ′.

We explain the idea using L1 gap costs for simplicity.

Lemma. The following equality holds:

f ′.score = f ′.weight + max{ 0, f .score− g1(f ′, f) | f � f ′ } .

Once again we have switched from global to local alignment by ‘adding a zero at
the right place’.

Now the modification to the line-sweep algorithm is straight-forward.

12036

KD-trees

The actual implementation done by Abouelhoda uses a KD-tree data structure.

A nice Java applet illustrating KD-trees (for dimension k = 2) can be found via
Hanan Samet’s homepage, http://www.cs.umd.edu/users/hjs/, the direct link
to the applet is http://donar.umiacs.umd.edu/quadtree/points/kdtree.html.
This is the one I presented in the lecture, but it was offline on 2007-06-22, so I went
on to another one.

Another nice Java applet can be found via Hüseyin Akcan’s homepage, http://
cis.poly.edu/~hakcan01/, the direct link to the applet is http://cis.poly.edu/

~hakcan01/projects/kdtree/kdTree.html, and this is also where I have copied
the pseudocode from.

12037

http://www.cs.umd.edu/users/hjs/
http://donar.umiacs.umd.edu/quadtree/points/kdtree.html
http://cis.poly.edu/~hakcan01/
http://cis.poly.edu/~hakcan01/
http://cis.poly.edu/~hakcan01/projects/kdtree/kdTree.html
http://cis.poly.edu/~hakcan01/projects/kdtree/kdTree.html

KD-trees (2)

12038

KD-trees (3)

12039

KD-trees (4)

12040

KD-trees (5)

12041

KD-trees (6)

12042

KD-trees (7)

12043

KD-trees (8)

The complexities of basic operations supported by KD-trees are as follows:

• Building a static kd-tree from n points takes O(n log n) time.

• Inserting a new point into a balanced kd-tree takes O(log n) time.

• Removing a point from a balanced kd-tree takes O(log n) time.

• Querying an axis-parallel range in a balanced kd-tree takes O(n1−1/k + r) time,
where r is the number of the reported points, and k is the dimension of the
kd-tree.

Note however that these are worst-case bounds. Moreover, there is no guarantee
that the tree will be balanced in our application. Thus the observed performance
can be better or worse in practice.

KD-trees are a standard data structure in computational geometry and discussed
in any textbook on the subject. You can also find the key facts at Wikipedia: http:
//en.wikipedia.org/wiki/Kd_tree

12044

http://en.wikipedia.org/wiki/Kd_tree
http://en.wikipedia.org/wiki/Kd_tree

Conclusion

12045

