
Vol. 23 no. 13 2007, pages 1573–1579
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm153

Genome analysis

OSLay: optimal syntenic layout of unfinished assemblies
Daniel C. Richter1,*, Stephan C. Schuster2 and Daniel H. Huson1
1Center for Bioinformatics (ZBIT), Institute for Computer Science, Tübingen University, 72076 Tübingen, Germany and
2Penn State University, Center for Comparative Genomics and Bioinformatics, University Park, PA 16802, USA

Received on January 16, 2007; revised on March 27, 2007; accepted on April 16, 2007

Advance Access publication April 26, 2007

Associate Editor: Martin Bishop

ABSTRACT

Summary: The whole genome shotgun approach to genome

sequencing results in a collection of contigs that must be ordered

and oriented to facilitate efficient gap closure. We present a new tool

OSLay that uses synteny between matching sequences in a target

assembly and a reference assembly to layout the contigs (or

scaffolds) in the target assembly. The underlying algorithm is

based on maximum weight matching. The tool provides an

interactive visualization of the computed layout and the result can

be imported into the assembly editing tool Consed to support the

design of primer pairs for gap closure.

Motivation: To enhance efficiency in the gap closure phase of a

genome project it is crucial to know which contigs are adjacent in the

target genome. Related genome sequences can be used to layout

contigs in an assembly.

Availability: OSLay is freely available from: http://www-ab.informatik.

unituebingen.de/software/oslay

Contact: drichter@informatik.uni-tuebingen.de

1 INTRODUCTION

In the prevalent whole genome shotgun (WGS) approach, a

genome sequence is assembled from a collection of short

sequences called reads (Sanger et al., 1982). The reads are

obtained using automated sequencers based on the well-

established Sanger method (Sanger et al., 1977) or using a

sequencing-by-synthesis technique recently introduced by the

company 454 (Margulies et al., 2005). Software is used to

assemble reads together to obtain large, contiguous fragments

called contigs. Reads are usually sequenced in pairs of known

relative order and orientation. This mate-pair information is

used to order and orient the contigs relative to each other, thus

producing scaffolds or supercontigs.
Such a WGS project does not produce a finished (fully

assembled) genome, but rather a collection of contigs or

scaffolds and thus there remain gaps in the reconstructed

sequence. The precise number of gaps depends on the level of

sequencing coverage and also on features of the genome that

determine how difficult the genome is to assemble, such as the

number, size and fidelity of repeats or cloning bias, when

Sanger sequencing is employed (Myers, 1999). The average read

length is also an important parameter and the longer the reads,

the easier the assembly problem becomes and the fewer gaps

will be produced.

It is unclear whether new sequencing-by-synthesis techniques

introduced by 454 and promised by Solexa Inc. and other

companies will make the assembly problem easier. Although

such methods produce substantially more sequence per dollar

and are not affected by cloning bias, the read length obtainable

is currently a lot shorter than what is obtainable by Sanger

sequencing.
In gap closure, the goal is to produce a finished genome by

using PCR to fill the gaps between the contigs of the assembly.

For efficiency, this is usually done using pairs of primers

located on different contig ends and then two simultaneous

PCR reactions are performed that run ‘toward each other’. This

is a costly and time-consuming process and so the goal is to

minimize the number of pairs that need to be considered. If the

number of contigs is n and if no further information is given,

then the number of pairs to be considered is O(n2). For any two

contigs that are known to be adjacent in the target genome,

it suffices to run one gap-closure PCR experiment for the two

adjacent contig ends. Thus, ideally, if the order and orientation

of all contigs produced by a WGS project were known, then the

number of required PCR experiments would equal the number

of gaps which is O(n).
In WGS assembly, scaffolds describe the relative layout of

sets of contigs obtained with the help of mate-pair information.

The question arises whether additional information can be used

to the layout the contigs or scaffolds. If the genome sequence of

a related species is available, then one possibility is to order and

orient contigs based on synteny of matched sequence between

both genomes. We will refer to the genome sequence of a

related species as a reference sequence, in the case of a finished

sequence, or reference assembly, if the reference genome is

unfinished.

A number of existing programs make use of synteny by

comparing unfinished assemblies to existing protein sequences

or peptide databases, connecting contig ends which are part of

a single open reading frame [BACCardI (Bartels et al., 2005),

PGAAS (Yu et al., 2002), CAAT-Box (Frangeul et al., 2004)].

Others use sequence markers on physical maps to confirm the

order of contigs [MapLinker (Xu and Gordon, 2005)]. The

web interface Projector2 (van Hijum et al., 2005) is a genome

mapping tool for ordering prokaryotic assemblies determined

by a template genome.*To whom correspondence should be addressed.

� The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1573

http://www-ab.informatik

In this article, we present the Optimal Syntenic Layout (OSL)
algorithm which aims at computing a layout (i.e. relative

ordering and orientation) of a set of contigs or scaffolds based
on syntenic information such as obtained by a sequence

comparison of the contigs against a reference sequence or
reference assembly. In addition to existing software tools, our

approach enables to even use fragmented reference sequences

(assemblies) such that the reference determines the order of the
target contigs and vice versa.
We have implemented the algorithm in a computer program

called OSLay (Optimal Syntenic Layouter). OSLay takes as
input a target assembly (a set of contigs or scaffolds) to be laid

out, and a reference sequence or assembly (also in the form of

contigs or scaffolds) and computes an optimal layout of the
target assembly, or if desired, of both the target assembly and

the reference assembly. The original layout and the inferred
layout are both displayed as enhanced, interactive dot plots.

The layout can be output in a number of different file formats,
including as an ace file directly importable into Consed

(Gordon et al., 1998) or as a list of predicted gap lengths
between contigs.

OSLay has been successfully used to layout a number of
assemblies and can also be to complement contigs generated

by Sanger sequencing with sequence data obtained from
sequencing-by-synthesis, as done in (Velicer et al., 2006).

OSLay is written in Java and installers for Linux/Unix,
MacOS X and Windows XP are freely available from our

website at: http://www-ab.informatik.uni-tuebingen.de/soft-

ware/oslay

2 METHODS

In the following, we propose a formulation and algorithm for the OSL

problem that aims at finding a syntenic layout of two assemblies that

maximizes the number of pairs of extended local diagonals.

A preliminary version of this approach was presented at the 2004

GCB conference (Friedrichs et al., 2004). In the following, we will

assume that both genomes used are presented as assemblies and will not

always distinguish between target and reference, as the algorithm will

treat them symmetrically. The case in which the reference genome is

provided as a single sequence is a special case of this. The main idea of

the OSL algorithm is to permute and flip contigs in the one assembly,

while keeping the ordering and orientations in the other assembly fixed,

so as to locally elongate the diagonals of sequence matches as much

as possible.

Suppose we are given a target sequence G. An assembly

A¼ (a1, . . ., ap) of G consists of a collection of contigs ai that are

putative substrings of G. (The algorithm can also be made to work if a1
to ap are scaffolds, rather than contigs, but we do not present the details

here.)

Let G and H be two genomes with assemblies A¼ (a1, . . ., ap) and

B¼ (b1, . . ., bq), respectively. A local sequence comparison of the two

assemblies [e.g. with BLAST (Altschul et al., 1990) or MUMmer (Kurtz

et al., 2004)] gives rise to a collection of matches M¼ (m1m2, . . .,mr).

A match m is specified as (a, x1, x2, b, y1, y2, o), with a2A, 1� x15x2
�|a|, b2B, 1� y15y2�|b|, and o2 (�1,þ1), where |a| denotes the

length of a and x1,x2, y1, y2 denote relative nucleotide positions within

contig a and b. The interpretation of this is that m is a direct match

between the interval with indices [x1, . . .,x2] in a and [y1, . . ., y2] in b, if

o¼þ1 or a match in which the sequence of the second interval is

reverse complemented, if o¼�1.

Usually BLAST matches are rather short local matches that lie close

to a common diagonal. To decrease complexity, any cluster of matches

is replaced by a single summarized match ms reflecting the total length

and orientation of the cluster. We will use Ms to denote the set of

summarized matches. We say that a match ms is informative, if it is an

‘overlap’ or ‘containment’ match, but not an ‘end-to-end’ match. For

our purposes, only informative matches are of interest, and this implies

that the two assemblies should not be too correlated, that i.e. contig

boundaries should not coincide (i.e. the contigs should not start and end

at equivalent positions).

Our tool visualizes A, B and M together in a dot-plot or comparison

grid Z (Fig. 1), where cell zij has width |ai| and height |bj|. The setMij of

all matches between ai and bj is displayed inside the cell zij. Match

diagonals represent common syntenic segments of A and B. If a

sequence segment exists in the reference assembly B that overlaps contig

boundaries of A, i.e. if a subsequence of B matches parts of different

contigs of A, then one can assume that these contigs should be located

next to each other. In this case, an appropriate layout of the contigs

may give rise to an extended diagonal in the comparison grid.

By switching the roles of A and B, a contig layout for B can be

found too.

2.1 The optimal syntenic layout problem

To be able to extend diagonals, one needs to know where summarized

matches can be extended: If a summarized match ms touches or comes

close to the side of a contig of A, an ‘anchor point’ of the cell side is

defined called a connector c¼ (y,w, o). It has height y that represents the

position where ms touches (or would touch) the side of the cell, a weight

w which is the length of ms and finally an orientation o representing the

orientation of ms, i.e. whether ms has a 45 or �45� slope.

Consider two cells, zij and zkj in the same row. Let Cright
ij be the set of

all right connectors associated with zij and Cleft
kj be the set of all left

connectors associated with zkj. We say that two connectors

c ¼ ðy,w,oÞ 2 Cright
ij and c0 ¼ ðy0,w0,o0Þ 2 Cleft

kj form a local diagonal

extension, if c0 extends c, i.e. if y� y0 and o¼ o0. We define the weight

of such an extension as wþw0�|h�h0|, that is, the sum of weights of the

involved matches, penalized by their height difference (Fig. 2a).

A

bj

alakaj

bk

ai

bi

B

Fig. 1. Example of a comparison grid Z showing two assemblies A and

B together with their a set of matchesM. Cell zii contains a direct match

whereas zji contains a reverse-complemented syntenic segment.

D.C.Richter et al.

1574

http://www-ab.informatik.uni-tuebingen.de/software/oslay

Every possible diagonal extension between any two contig sides is

assigned a weight. It is important to mention that connectors either

from rows or from columns are considered but not both at the same

time. Therefore, the two problems of determining a layout for the target

assembly or a layout for the reference assembly are independent of each

other.

The check for consistent diagonal extensions assumes that for all

contigs (whole columns and rows, respectively) of the target assembly

every possible combination of sides �, "2 (left, right) is examined. Given

two columns (rows) aiai and bj, we define the score of matching the �-

side of aiai to the "-side of bj as the sum of weights of all local diagonal

extensions obtained for cells contained in the two columns (rows).

To introduce the OSL problem, a layout of assembly A is defined as a

signed permutation

� : 1, . . . ,pð Þ� ��ð1Þ, . . . ,� �ðpÞð Þ,

where |�p(i)| denotes the position of contig i in the ordering and

sign(�p(i)) denotes its orientation, i.e. whether i was flipped, or not.
The OSL problem can now be formulated:

The OSL problem is to determine a layout p of A that maximizes the

sum of scores of local diagonal extensions.

In terms of the comparison grid, this corresponds to finding an

ordering and orientation of the columns (or rows) of the grid such that

the sum of scores of pairs of adjacent column sides (or row sides,

respectively) is maximized.

2.2 The OSL graph

A layout graph G¼ (V,E,!) is defined with vertex set V, edge set E and

an edge weight function ! which assigns a positive weight to every edge

in the graph.

For each column ai of the grid Z, we define two nodes vlefti and vrighti

that correspond to the left and right sides of the column. Consider a

pair of nodes v�i and v"j representing two different columns a�i and a"j ,

with �, "2 (left, right). We define an edge e between the two nodes v�i
and v"j , if the score S of matching the �-side of column ai with the "-side

of column aj is 40. In this case, we set the weight !(e) equal to S

(Fig. 2).

Given a layout p of A, we say that an edge e2E between two nodes

v�i 2 V and v"j 2 V is realized, if the �-side of vi is adjacent to the "-side of

vj in the layout. In other words, we require that |p(i)�p(j) |¼ 1 and the

orientations are appropriate so that the two sides under consideration

are next to each other.

By definition of the graph G, we have:

Lemma 1

The OSL problem is equivalent to finding a layout p of A that maximizes

the sum of weights of all realized edges in the graph G.

This implies:

Lemma 2

The OSL problem is NP-hard.

Proof. We construct a reduction of the TSP problem with all distances

in {1,2} (Garey and Johnson, 1979). Given a set C¼ (c1, . . ., cp) of cities

and a distance D(i, j)2 (1,2) for every pair of cities. Construct two

assemblies, A¼ (a1, . . ., ap), where ai represents city ci, and

B¼ (b1, . . ., bq), with q¼ 2p2. For any two numbers 1� i,j� p set

k¼ (i� 1)pþ j2 (1, . . ., p2) and consider two cells zik and zjk. Place a

positive line segment that touches the right side of zik and another that

touches the left side of zjk, so that they form an extension of weight 1.

Also, place two such segments touching the left side of zik and right side

of zjk, respectively. If D(i, j)¼ 2, then, additionally, set k0 ¼ p2þ k and

place four such line segments in cells zik0 and zjk0, too. Hence, if ai and aj
are adjacent in the obtained layout, then 1 or 2 will be contributed to

the score, depending on whether the corresponding edge in the input

graph has weight 1 or 2, respectively. Given this construction, the set of

optimal layouts of A corresponds precisely to the set of all optimal

tours of the cities.

2.3 The OSL algorithm

The problem of finding a maximum weight matching in G¼ (V,E,!) can

be solved efficiently (Gabow, 1976). Consider such a matching U�E.

For the following discussion, we add a set F of additional

contig edges to the graph: For every pair of nodes vlefti ,vrighti 2 V

coming from the same contig ai, we add an edge connecting these two

nodes. Consider the graph G0 ¼ (V,U[F) containing only the matching

edges and the contig edges. As the contig edges themselves form a

matching, the graph G consists only of paths and even-length cycles.

If the graph contains no cycles, then a solution of the OSL problem is

obtained simply by laying out the contigs of A in any way that preserves

the layout induced by the chains. If the graph contains one or more

cycles, then each such cycle must be broken by removing a matching

edge of minimum weight. In this way, each cycle loses less than half of

its total weight. Because there may exist another solution that does not

involve cycles, in the worst case, breaking cycles in this way may

produce a solution that has only half the weight of an optimal solution.

Here is a summary of the algorithm:

Algorithm 1

Input: Assemblies A and B, and matches M

Output: A layout for A

Construct the graph G¼ (V,E,!), as described above

Compute a maximum matching U�E

Let F be the set of all contig edges

Construct G0 ¼ (V,U[F, !)

For each cycle C inG:

Delete the smallest weight edge in C\U

Greedily link all resulting paths into one path visiting all nodes

Traverse the chain and report the resulting layout.

We have shown the following result:

Theorem 1

Algorithm 1 computes a 2-approximation for the OSL problem.

Fig. 2. (a) Three cells of the comparison grid Z with connectors

ci guiding the ordering process: Dotted lines represent possible side-

by-side connections between the three contigs ai, aj, ak2A. (b) Layout

graph G which is induced by local extensions: for each possible

connector connection, a weighted edge is added to G between two

contig side nodes v�i , v
"
j with i 6¼ j and �, "2 (left, right). Every pair of

contig side nodes deriving from the same contig are incident to a contig

edge.

Optimal syntenic layout of unfinished assemblies

1575

Note that if the graph G does not contain cycles, the obtained result is

optimal. In practice, such cycles will occur only rarely and thus the

algorithm will often produce an optimal result.

3 IMPLEMENTATION

We have implemented the OSL algorithm in a program called

OSLay. Our intention was to produce an interactive tool that

can be integrated into a typical assembly pipeline. OSLay’s

main features are:

� an interactive user interface for exploring and visualizing

the data,

� applicability to either prokaryotic and eukaryotic genomes,

� layout of a target assembly based on a given reference

genome, or the layout of two assemblies simultaneously,

� integration into the assembly and finishing pipeline of the

assembler Phrap and viewing software Consed by provid-

ing an output directly usable for easy primer picking,

� several possibilities to filter and adapt data such as

trimming of unmatched contig ends, and

� detection of recombinations or putative misassembles and

handling of typical contig-end artifacts.

3.1 Basic design

OSLay is written in Java and uses the sequence visualization

engine provided by CGViz (Delgado-Friedrichs et al., 2003).

The program provides an enhanced dot-plot visualization of

the comparison of two assemblies both before and after layout.

The program runs well on small and medium size genomes

(�200Mb).

OSLay takes three files as input: two FASTA files containing

the contigs of two assemblies as DNA sequences, referred to as

the target and reference assemblies, and the corresponding

matches file which is previously computed using BLAST or

MUMmer. Repeat filtering [e.g. with RepeatMasker (Smit

et al., 1996–2004)] is required for large eukaryotic genomes.

3.2 Visualization

After parsing the data, three views are generated: the first view

(original data view) displays all contigs sorted by their lengths

and all matches. Horizontal and vertical thin blue lines indicate

the contig borders that define the comparison grid.
The second view shows the same match distribution as the

original data view with one restriction: only summarized

matches which give rise to connectors are displayed. If matches

touch (or almost touch) contig sides in the raw data view, a

connector is placed at the concerned contig border. Connectors

are colored green or red if they are placed on the vertical

or horizontal contig borders, respectively.

Finally, the third view (syntenic layout view) depicts the result

of running the OSL algorithm. In the resulting layout, contigs

are ordered and oriented to form new supercontigs.

Supercontigs are surrounded by framed boxes and display the

connectors. Ideally, one or several extended match diagonals

involving single contigs and covering most of the genome will

be obtained. All visualizations can be interactively explored

using OSLay’s dot-plot navigation tools.

A number of parameters can be set to govern the match

summarizing process, the setting of connectors or the syntenic

ordering. Displayed matches, cells, connectors, etc. can all be

interactively queried to obtain information such as their id,

length, type of match, etc.

3.3 Additional features and enhancements

In practice, difficulties arise due to assembly artifacts present

at the ends of contigs (which presumably may also cause

the assembly to break into contigs in the first place), and also

due to evolutionary events that differentiate the target and

reference genomes. Three of the most common problems are as

follows:

(1) Inserts cause unmatched regions in target contigs. If an

insertion of foreign DNA (e.g. phage DNA) took place in

the target genome, but not in the reference genome, then

no sequence matches will be found in the corresponding

region in the dot plot. In particular, if the insert is located

at a contig end in the target assembly, then the

construction of a contig layout might be misled and

some possible local extension between connectors might

be missed. To address these complications, OSLay

provides an option to ignore unmatched contig ends by

setting connector positions directly to the locations where

matches actually end and not where they are projected to

end (Fig. 3a).

(2) Bad sequence quality, artifacts or misassemblies.

Undesirable artifacts like obvious misassamblies at

contig ends can prevent a successful contig layout

because they give rise to ambiguous connector assign-

ments. OSLay provides an option to ignore these

misleading matches. In Figure 3b, the short match at

the top corner can be ignored in further computations

when setting connectors.

(3) Repetitive regions. Another observation is that repetitive

regions in the reference genome that repeatedly map

to a contig end of the target genome often complicate

further computation. Because every summarized match

xai xai

(a) (b) (c)

Fig. 3. Some additional features of OSLay. (a) Trimming of unmatched

contig ends: contig ai contains a piece of inserted foreign DNA x that

does not match anything in the other assembly. Ignoring x, the

connector is set to a different height. (b) If the short match at the top

left side is due to misassembly, then it should be ignored. (c) A single

cell containing a broken match may either indicate a recombination or a

misassembly depending on the type of input of data.

D.C.Richter et al.

1576

located near contig sides gives rise to a connector, as

a consequence, too many misleading connectors are

generated. To get rid of unusable connectors based on

repeats, the user is able to filter repeats on both axes.

OSLay can selectively display recombinations and/or mis-

assembles. This feature is useful when comparing two related

assemblies or when assembling the same genome with two

different assemblers. Recombinations are visible as ‘broken

matches’ (Fig. 3c) in which at least two matches show different

slopes in a single cell. When analyzing the result of an

assembler–assembler comparison, this configuration indicates

that one assembler has assembled a contig differently with

respect to the other assembler. This type of situation is not

modified by the OSL algorithm.
As already mentioned, instead of contigs OSLay is able to

sort scaffolds as well: contig sequences contained in a scaffold

can be concatenated. Gaps between contigs are filled with Ns if

the gap size is known. Using this as input for BLAST and given

a suitable reference genome, one will be able to sort the

scaffolds. Since OSLay offers a parameter to adjust the allowed

gap distance between matches situated near a putative

diagonal, larger gaps between contigs contained in scaffolds

do not complicate the sorting procedure.

3.4 Output

In addition to the visualized results, OSLay provides the user

with several output files that can be used for various subsequent

analyses:

(1) A supercontig list of all computed supercontigs and

contained contigs.

(2) A multi-fasta file containing all supercontig DNA

sequences. Each supercontig is a single record in a

multi-fasta file. Single contig sequences are automatically

ordered, reverse complemented (if required) and con-

catenated within each supercontig to reflect the computed

contig layout. OSLay is able to estimate the gap distance

between single contigs by computing the height difference

between connectors linking two contig sides. These gaps

are filled with ‘N’s. This provides an approximate

estimation of the target genome size in relation to the

reference genome. Additionally, the gap distance infor-

mation (also provided as a single file) is valuable when it

comes to primer design.

(3) A contig mapping file containing the position of every

target contig in the reference genome.

(4) A Phrap ace file that is directly importable into the viewer

and primer design software Consed. If the target

assembly was produced using the Phrap assembler, an

existing ace file can be taken as input and modified by

OSLay so as to reflect the computed layout. All read

coordinates and other related values are adapted, too. If

the target assembly was not produced by Phrap, then

OSLay can create an ace file from scratch. This simplifies

the task of primer design, as contigs that are adjacent in

the computed layout appear as neighbors in Consed.

OSLay automatically assigns reverse-complemented
contig (and read) sequence, when necessary.

4 RESULTS

Here, we show OSLay results for two different strains of the

prokaryotic organism Bdellovibrio bacteriovorus. The HD100

strain is a predatory Gram-negative bacterium (Rendulic et al.,

2004) that invades and consumes other Gram-negative bacteria.
The HDHI strain was evolved from strain HD100 in a short

time evolution experiment aimed at isolating a host inde-

pendent mutant. Both genome sizes are �3.78Mb and differ

only in a small amount of genes. (Rendulic et al., in

preparation).
HD100 serves as the reference assembly and the set of 376

HDHI contigs is the target assembly to be ordered and

oriented. To explore the performance of OSLay’s layout

algorithm, we considered several reference assemblies obtained

at different sequencing stages of the HD100 genome. These

consist of different number of reference contigs and thus give
rise to different numbers of super contigs (Fig. 4a–d and

Table 1). The HD100 assemblies are the product of a typical

Sanger sequencing project whereas HDHI was sequenced with

12.97� coverage using Roche’s sequencing-by-synthesis tech-

nology (unpublished data, Margulies et al., 2005). As both

genomes are highly collinear, this experiment is an ideal

example of a syntenic layout: The contigs of the target
genome are almost completely laid out using the reference

sequence.

Our results show that OSLay is able to order and orient the

target contigs to obtain (partial) local extensions, i.e. elongation
of local diagonals (Fig 4a–c). Even with a fragmented reference

assembly consisting of 66 contigs (Fig. 4a), OSLay can

significantly reduce the number of single contigs from 376 to

29 supercontigs, thus greatly simplifying the task of gap

closure.
With increasing sequencing coverage, the number of com-

puted supercontigs decreases, until only one super contig is left

(Fig. 4d). Although nearly 90 contigs are not contained in the

contig layout, the 286 sorted contigs cover �99% of the

summarized contig length. Only a set of contigs with a total
length of �34 kb (not shown in Table 1) remains unsorted.

5 DISCUSSION

The ‘next-generation’ sequencing technology is aimed at

producing substantially more sequence in less time and for

less money/megabase, but at the cost of decreased read lengths.

Thus, genome sequences will continue to require WGS
sequencing and assembly, however followed by a more

demanding gap-closing phase, as the shorter read length results

in a much higher number of contigs despite increased sequence

coverage. As many more genome sequences of type strains

become available, sequencing projects of closely related strains

are increasingly performed and these profit from synteny-based

contig layout, such as provided by OSLay.
The main application of OSLay is to produce a layout of

contigs (or scaffolds) of a target assembly, given a reference

Optimal syntenic layout of unfinished assemblies

1577

genome. While this is a trivial undertaking in case of a finished

and closed reference genome, the OSLay approach becomes a

powerful tool when used to layout a pair of assemblies

simultaneously (e.g. when the reference genome itself is

unfinished). Further, the program provides visual feedback

on the scaffolding information and most importantly facilitates

the import of syntenically ordered assemblies into Consed, a

tool for assembly visualization and gap closure. This feature of

e)

Fig. 4. Result views from four subsequent assembly phases of reference HD100 differing in the number of reference contigs (y-axis). Left column:

original data view showing matches obtained by BLAST alignment. Right column: OSLay’s computed syntenic layout with ordered and oriented

contigs contained in supercontigs (black bars). The HDHI100 assembly (x-axis) consists of 376 contigs, which can be almost completely laid out

(d) (see Table 1 for additional information). The last view shows a mapping of all ordered and concatenated contigs onto the finished genome

sequence (e).

D.C.Richter et al.

1578

OSLay greatly simplifies the design of primer pairs for gap

closure using PCR, as each amplicon spanning a gap now falls
between the contig end sequences of two correctly ordered and
oriented scaffolds.

A current trend in genome projects is to sequence one set of
reads using Sanger sequencing and another set of reads using a
sequencing-by-synthesis approach. The two approaches have

different characteristics and so, when assembled separately,
give rise to contigs with different contig boundaries, as both
data require independent assembly programs. Each indepen-
dent assembly can then be merged into a ‘meta-assembly’ using

OSLay, with the side effect of visualizing possible misassem-
blies in either data set.
One drawback is that only closely related species can be used

for ordering and sorting contigs. Our syntenic approach is not
capable of sorting contigs if the used genomes or assemblies are
derived from a more distant pair of species, which is not very

surprising. The OSL algorithm works well for species from the
same genus but usually has difficulties when using genomes
from different orders or classes of the taxonomy.
The usage of mate-pairs (if available) is still the first choice to

close a fragmented assembly. Thus, we plan to extend OSLay to
take mate-pairs into account. This should help to increase the
significance of contig links found by OSLay and to detect

possible misassemblies.
OSLay has already been successfully applied to several

recently sequenced microbial genomes at Penn State University,

USA and at the Ludwig-Maximilian-University in collabora-
tion with the Max-von-Pettenkofer Institute, Munich,
Germany.

ACKNOWLEDGEMENTS

Funding for D.C.R. and D.H.H. was provided by the Deutsche

Forschungsgemeinschaft (BIZ 1/1-2 & 1/1-3), D.C.R. and

S.C.S. were supported in part by the Penn State University.

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Bartels,D. et al. (2005) BACCardI – a tool for the validation of genomic

assemblies, assisting genome finishing and intergenome comparison.

Bioinformatics, 21, 853–859.

Delgado-Friedrichs,O. et al. (2003) A meta-viewer for biomolecular data.

GI Jahrestagung, 1, 375–380.

Frangeul,L. et al. (2004) CAAT-Box, Contigs-Assembly and Annotation

Tool-Box for genome sequencing projects. Bioinformatics, 20, 790–797.

Friedrichs,O. et al. (2004) Syntenic Layout of Two Related Genomes.

Proceedings of GCB 2004..

Gabow,H. (1976) An efficient implementation of Edmond’s algorithm for

maximum matching on graphs. J. ACM, 23, 221–234.

Garey,M.R. and Johnson,D.S. (1979) Computers and Intractability: a guide to the

theory of NP-completeness. W. H. Freeman and Company. New York, NY,

USA.

Gordon,D. et al. (1998) Consed: a graphical tool for sequence finishing.

Genome Res., 8, 195–202.

Kurtz,S. et al. (2004) Versatile and open software for comparing large genomes.

Genome Biol., 5, R12.

Margulies,M. et al. (2005) Genome sequencing in microfabricated high-density

picolitre reactors. Nature, 437, 367–380.

Myers,E.W. (1999) Whole-genome DNA sequencing. IEEE Comput. Eng. Sci., 3,

33–43.

Rendulic,S. et al. (2004) A predator unmasked: life cycle of Bdellovibrio

bacteriovorus from a genomic perspective. Science, 303, 689–692.

Sanger,F. et al. (1977) DNA sequencing with chain-terminating inhibitors.

Biotechnology, 24, 104–108.

Sanger,F. et al. (1982) Nucleotide sequence of bacteriophage � DNA.

J. Mol. Biol., 162, 729–773.

Smit,A.F.A. et al. (1996–2004) RepeatMasker Open-3.0. 5http://

www.repeatmasker.org4.

van Hijum,S. et al. (2005) Projector2: contig mapping for efficient gap-closure of

prokaryotic genome sequence assemblies. Nucleic Acids Res., 33, 560–566.

Velicer,G.J. et al. (2006) Comprehensive mutation identification in an evolved

bacterial cooperator and its cheating ancestor. Proc. Natl Acad. Sci. USA,

103, 8107–8112.

Xu,J. and Gordon,J.I. (2005) MapLinker: a software tool that aids physical

map-linked whole genome shotgun assembly. Bioinformatics, 21, 1265–1266.

Yu,Z. et al. (2005) PGAAS: a prokaryotic genome assembly assistant system.

Bioinformatics, 18, 661–665.

Table 1. OSLay statistic for four assembly stages (Fig. 4a–d)

Number of reference

contigs

Number of

supercontigs

(contigs contained)

Total length

of supercontigs

(compared to total

genome length)

66 29 (260) 3 513 114 bp (93%)

27 14 (274) 3 697 854 bp (98%)

6 11 (277) 3 704 402 bp (98%)

1 1 (286) 3 748 836 bp (99%)

Target assembly HD100 originally contains 376 contigs.

Optimal syntenic layout of unfinished assemblies

1579

