
10 Sequence Assembly

The exposition was prepared by Daniel Huson, Knut Reinert, and (a few bits) Clemens GrÃPpl. It is based on
the following sources, which are all recommended reading:

1. Daniel Huson, Knut Reinert: Bioinfomatics support for genome sequencing projects, in: Thomas
Lengauer (ed.), Bioinformatics - From Genomes to Therapies, Wiley-VCH, Weinheim, 2007. ISBN: 978-3-
527-31278-8

2. Michael S. Waterman, Introduction to computational biology, Chapman and Hall, 1995. (Chapter 7)

3. Eugene W. (Gene) Myers et al.: A Whole-Genome Assembly of Drosophila, Science, 287:2196-2204, 24
March 2000.

4. Venter et al.: The sequence of the Human Genome, Science, 291:1304-1351, 16 February 2001.

5. Daniel Huson, Knut Reinert and Eugene Myers: The Greedy-Path Merging Algorithm for Sequence
Assembly, RECOMB 2001, 157-163, 2001.

10.1 Genome Sequencing

Current sequencing technologies can only determine short consecutive pieces of DNA (Depending on the
method 20 − 60, 150 − 250, and 700 − 1000). To sequence a larger piece of DNA, shotgun sequencing is used.

Originally, shotgun sequencing was applied to small viral genomes and to 30 − 40kb segments of larger
genomes.

In 1994, the 1.8Mb genome of the bacteria H.influenzae was assembled from shotgun data.

At the beginning of 2000, an assembly of the 130Mb Drosophila genome was published.

At the beginning of 2001, two initial assemblies of the human genome were published.

Since then many genomes have been sequenced using the whole shotgun method.

10.2 The technologies

We give now three short animations to illustrate how the still most commonly used method (capillary gel
electrophoresis) and two new, quite mature technologies (454 sequencing and Solexa sequencing) work.

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10001

10.3 The technologies

10002 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

10.4 The big picture – From molecule to sequence

Whole genome shotgun
sequencing (WGS)

Illustration Clone by clone sequencing
(CBC)

Source sequence (target) (≈
3000 Mbp for human)

ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA Source sequence (target)

Not done in WGS

ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA

ACGTTGC
ACTAGCACAGCGC

TACGACTACGACTCAGCA
CACTAGCACAGCGCGCTATAT

ACGTTGCACTAGCA

GACTACGACTACGACTCAGCA
AGCACAGCGCGCTATATCGACTCA

CGCTATATCGACT
TATCGACTACGACTAC is broken into smaller pieces

(150–1000kbp)

Not done in WGS

ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA

CACTAGCACAGCGCGCTATAT
ACGTTGCACTAGCA

GACTACGACTACGACTCAGCA
AGCACAGCGCGCTATATCGACTA

Big pieces are selected to tile
the target (minumum tiling
least costly but most diffi-
cult)⇒ Physical mapping

Big source sequence is
copied many times. . .

ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA

ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCTATATCGACTACGACTACGACTCAGCA

all source sequences (e.g.
40000 for human) are copied
many times

and randomly broken into
fragments, e.g. using sonica-
tion or nebulation, . . .

AGCGCGCTATATCGACTACG

TGCACTAGCACAGCGCGCTATATCGACT

ACGACTCAGC

ACGACTCAGC

CGCTATATCGACTACGA

ACTAGCACAGCGCGA

ACTAGCACAGCGCGA

TGCACTAGCACAGCGCGCTATATCGACT

ACGACTCAGC

ACGTTGCACTAGCACAGCGCGCT

CGCTATATCGACTACGA

CGCTATATCGACTACGA

TACGACTACGACTCAGCA

ACTAGCACAGCGCGA

TACGACTACGACTCAGCA
ACGTTGCACTAGCACAGCGCGCT

CGCTATATCGACTACGA

AGCACAGCGCGCTATAT

TACGACTACGACTCAGCA AGCG

TTTTTTTT

TGGTG

AA each sequence is randomly
broken into fragments

that are then size selected,
size e.g. 2kb, 10kb, 50kb or
150kb, . . .

ACCGGCAGCAGCAGCACAGACGAC

AGCAGCAGCGCACAGACGAC

ATATATACACACTGGCTACACT

ATTGCTATATACACACTGGCTACACT

ATTGTTTATATACACACTGGCTACACT

TGTTGTGCTCGTGCTATATACACACTGGCTT

TGTTGTGCTCGTGCTATATACACTGGCTACACT

ACCGCTGCACACACGGTAGCAGCAGCAGCACAGACGAC

ACCGCTGCACACACGGTAGCAGCAGCACAACGAC

ACCGCTGCACACAGCAGCACAGACGAC
GCTGCACACACGGTAGCAGCAGCAGCACAGACGAC

ATTGTTGTGCTCGTGC

TATACACACTGGCTACACT

ACTGGCTACACT

TATACACACTACT

that are then size selected

0http://www.biology-online.org/dictionary/sonication : The process of disrupting biologic materials by use of sound wave
energy.

http://www.biology-online.org/dictionary/sonication

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10003

and inserted into cloning vec-
tors.

ATTGCTATATACACACTGGCTACACT

and all inserted into cloning
vectors.

In double barrel shotgun se-
quencing, each clone is se-
quenced from both ends, to
obtain a mate-pair of reads,
each read of average length
550 with ≈ 1% error.

ATTGCTATATACACACTGGCTACACT
TAACG... ...ATGTGAXX XX

first approaches did not use
double barrel, later they did.

Result of assembly is a col-
lection of scaffolds for the
whole genome.

Each clone is a collection of
scaffolds.

Ordering is quite difficult,
since small pieces are hard
to map back to the genomic
axis

? ? ?
Local ordering is relatively
easy.

Not done in WGS The sequence of all clones
has to be asssembled accord-
ing to the physical map and
sequence overlaps. Due to
repeats and assembly errors
this is hard.

10.5 Shotgun sequencing data

Given an unknown DNA sequence a = a1a2 . . . aL.

Shotgun sequencing of a produces a set of reads

F = { f1, f2, . . . , fR},

of average length 550 (at present).

Essential characteristics of the data:

• Incomplete coverage of the source sequences.

• Sequencing introduces errors at a rate of about %1 for the first 500 bases, if carefully performed.

• The reads are sampled from both strands of the source sequence and thus the orientation of any given
read is unknown.

10004 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

10.6 The fragment assembly problem

The input is a collection of reads (or fragments) F = { f1, f2, . . . , fR}, that are sequences over the alphabet
Σ = {A,C,G,T}.

An ε-layout of F is a string S over Σ and a collection of R pairs of integers (s j, e j) j∈{1,2,...,R}, such that

• if s j < e j then f j can be aligned to the substring S[s j, e j] with less than ε· | f j | differences, and

• if s j > e j then f j can be aligned to the substring S[e j, s j] with less than ε· | f j | differences, then

•
⋃R

j=1[min(s j, e j),max(s j, e j)] = [1, | S |].

The string S is the reconstructed source string. The integer pairs indicate where the reads are placed and
the order of si and ei indicate the orientation of the read fi, i.e. whether fi was sampled from S or its complement
S.

The set of all ε-layouts models the set of all possible solutions. There are many such solutions and so
we want a solution that is in some sense best. Traditionally, this has been phrased as the Shortest Common
Superstring Problem (SCS) of the reads within error rate ε. Unfortunately, the SCS Problem often produces
overcompressed results.

Consider the following source sequence that contains two instances R, R′ of a high fidelity repeat and three
stretches of unique sequence A, B and C:

reads:

source:

R’

R’l R’cRl R’rRc Rr

R

A B C

The shortest answer isn’t always the best and the interior part Rc ≈ R′c of the repeat region is overcompressed:

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10005

reads:

reconstruction: R’lRl Rc Rr

R

A B R’r C

R’

10.7 Sequence assembly in three stages

Traditional approaches to sequence assembly divides the problem into three phases:

1. In the overlap phase, every read is compared with every other read, and the overlap graph is computed.

2. In the layout phase, the pairs (s j, e j) are determined that position every read in the assembly.

3. In the consensus phase, a multialignment of all the placed reads is produced to obtain the final sequence.

10.8 The overlap phase

For a read fi, we must calculate how it overlaps any other read f j (or its reverse complement, f j). Holding fi
fixed in orientation, fi and f j can overlap in the following ways (or not!):

f
i

f j

f
i

f j

f
i

f
i

f
i

f j

f j

f j)(
The number of possible relationships doubles, when we also consider f j.

The overlap phase is the computational bottleneck in large assembly projects. For example, assembling all

10006 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

27 million human reads produced at Celera requires

2 ·
(
27000000

2

)
≈ 1458000000000000 ≈ 1.5 · 1015

comparisons.

For any two reads a and b (and either orientation of the latter), one searches for the overlap alignment with
the highest alignment score, based on a similarity score s(a, b) on Σ and an indel penalty g(k) = kδ.

Let S(a, b) be the maximum score over all alignments of two reads a = a1a2 . . . am and b = b1b2 . . . bn; then
we want to compute:

A(| a |, | b |) = max

S(ak, ak+1 . . . ai, blbl+1 . . . b j) |


1 ≤ k ≤ i ≤ m,
1 ≤ l ≤ j ≤ n,
and i = m or j = n holds


 .

10.9 Overlap alignment

This is a standard pairwise alignment problem (similar to local alignment, except we don’t have a 0 in the
recursion) and we can use dynamic programming to compute:

A(i, j) = max{S(ak, ak+1 . . . ai, blbl+1 . . . b j) | 1 ≤ k ≤ i and 1 ≤ l ≤ j}.

Algorithm (Overlap alignment)
Input: a = a1a2 . . . an and b = b1b2 . . . bm, s(·, ·) and δ
Output: A(i, j)
begin

A(0, j) = A(i, 0)← 0 for i = 1, . . . ,n, j = 1, . . . ,m
for i = 1, . . . ,n:

for j = 1, . . . ,m:

A(i, j)← max


A(i − 1, j) − δ,
A(i, j − 1) − δ,
A(i − 1, j − 1) + s(ai, bi)


end

Runtime is O(nm).

Given two reads a = a1a2 . . . am and b = b1b2 . . . bn. For the matrix A(i, j) computed as above, set (p, q) :=
arg max{A(i, j) | i = m or j = n}.

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10007

There are two cases:
p = m or q = n

The trace-back paths look like this:

10
0
1

A(i,j)

a
m

n

p

q
b

or

10
0
1

A(i,j)

a
m

n

b

p

q

The alignments look like this:
a

b or

a

b

10.10 Faster overlap detection

Dynamic programming is too slow for large sequencing projects. Indeed, it is wasteful, as in assembly, only
high scoring overlaps with more than e.g. 96% identity play a role.

One can use a seed and extend approach (as used e. g. in BLAST):

1. Produce the concatenation of all input reads H = f1 f2 . . . fL.

2. For each read fi ∈ F : Find all seeds, i.e. exact matches between k-mers of fi and the concatenated sequence
H. (Merge neighboring seeds.)

3. Compute extensions: Attempt to extend each (merged) seed to a high scoring overlap alignment between
fi and the corresponding read f j.

(A k-mer is a string of length k. In this context, k = 18 . . . 22)

Computation of seeds:

H
...f1 f2 f3 f4 fL

fi

seeds

10008 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

Extension of seeds using banded dynamic programing (running time is linear in the read length)

10.11 True and repeat-induced overlaps

Assume that we have found a high quality overlap o between fi and f j. There there are three possible cases:

• The overlap o corresponds to an overlap of fi and f j in the source sequence. In this case we call o a true
overlap.

• The reads fi and f j come from different parts of the source sequence and their overlapping portions are
contained in different instances of the same repeat, this is called a repeat-induced overlap.

• The overlap exists by chance. To avoid short random overlaps, one requires that an overlap is at least 40bp
long.

fjfi
Source

fk fl

R1 R2

The figure shows a true overlap between fi and f j and a repeat induced overlap between fk and fl.

10.12 Avoiding repeat-induced overlaps

We want to avoid the computation of repeat-induced overlaps. One strategy is to only consider those seeds in
the seed-and-extend computation whose k-mers are not contained inside a repeat. In this way we can ensure
that any computed overlap has a significant unique part.

There are two strategies for this:

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10009

• Screening known repeats: Each read is aligned against a database of known repeats, i.e. using the program
Repeatmasker. Portions of reads that match a known repeat are labeled as “repetitive”.

• De novo screening: For each k-mer contained in H, the concatenation of reads, we determine how many
times it occurs in H and then label those k-mers as repetitive, whose number of occurrences is unexpectedly
high.

10.13 Celera’s overlapper

The assembler developed at Celera Genomics employs an overlapper than compares up to 32 million pairs of
reads per second.

Overlapping all pairs of 27 million reads of human DNA using this program takes about 10 days, running
on about 10-20 four-processor machines (Compaq ES40), each with 4GB of main memory.

The input data file is about 50GB. To parallelize the overlap computation, each job grabs as many reads as
will fit into 4GB of memory (minus the memory necessary for doing the computation) and then streams all 27
million reads against the ones held in main memory.

10.14 The overlap graph

The overlap phase produces an overlap graph OG, defined as follows: Each read fp ∈ F is represented by a
directed edge (sp, ep) from node sp to ep, representing the start and end of fp, respectively. The length of such a
read edge is simply the length of the corresponding read.

An overlap between fp = fp1 fp2 . . . fpm and fq = fq1 fq2 . . . fqn gives rise to an undirected overlap edge e
between sp, or ep, and sq, or eq, depending on the orientation of the overlap, e.g.:

j

i

1

sp

eq

ep

sq

mfp

fq

1

n

The label (or “length”) of the overlap edge e is defined to be −1 times the overlap length, e.g. −(m−i+ j−1
2 + 1)

in the figure.

10.15 Example

Assume we are given 6 reads F = { f1, f2, . . . , f6}, each of length 500, together with the following overlaps:

10010 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

50 f1
f5

330

40f1
f4

f6
f1

320f1
f2

95

f4
f2

60
f6

f2

80

f4
f3

250

f6
f5

Here, for example, the last 320 bases of read f1 align to the first 320 bases of the reverse complement f2 of
f2, whereas f1 and f5 overlap in the first 50 bases of each.

We obtain the following overlap graph OG:

−40
f1

f2f6

f3
−250

−330

−60

−50

−320

−95

−80

f5 f4

Each read fp is represented by a read edge (sp, ep) of length | fp |. Overlaps off the start sp, or end ep, of fp
are represented by overlap edges starting at the node sp, or ep, respectively. Each overlap edge is labeled by −1
times the overlap length.

10.16 The layout phase

The goal of the layout phase is to arrange all reads into an approximate multi-alignment. This involves
assigning coordinates to all nodes of the overlap graph OG, and thus, determining the value of si and ei for
each read fi.

A simple heuristic is to select a spanning forest of the overlap graph OG that contains all read edges. 1

1(A spanning forest is a set F of edges such that any two nodes in the same connected component of OG are connected by a unique
simple, unoriented path of edges in F.)

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10011

−40
f1

f2f6

f3
−250

−330

−60

−50

−320

−95

−80

f5 f4

Such a subset of edges positions every read with respect to every other, within a given connected component
of the graph:

5004501 730280 950 1410

f5

f1

f6

f4

f2

f3

1830

Such a putative alignment of reads is called a contig.

The spanning tree is usually constructed using a greedy heuristic in which the overlap edges are chosen in
order of decreasing overlap length (i.e., increasing edge “length”).

−40
f1

f2f6

f3
−250

−330

−60

−50

−320

−95

−80

f5 f4

10012 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

10.17 Repeats and the layout phase

Consider the following situation:

R

f1
f2

f3

f4
f5

f7

f6

two copy repeat

reads

sourceR’

This gives rise to the following overlap graph:

f1

f2

f3

f4

f5

f6

f7

Consider this spanning tree:

f

f1

f2

f3

f4

f5

f6

f7

e

A layout produced using the edge e or f does not reflect the true ordering of the reads and the obtained
contig is called misassembled:

f1
f2

f3

f4

f5

f7

f6

e

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10013

However, avoiding the repeat-induced edges e and f , one obtains a correct layout:

f1
f2

f3

f4
f5

f7

f6

Note that neither of the two layouts is “consistent” with all overlap edges in the graph.

10.18 Unitigging

The main difficulty in the layout phase is that we can’t distinguish between true overlaps and repeat-induced
overlaps. The latter produce “inconsistent” layouts in which the coordinate assignment induces overlaps that
are not reflected in the overlap graph (e.g., reads f4 and f7 in the example above).

Thus, the layout phase proceeds in two stages:

1. Unitigging: First, all uniquely assemblable contigs are produced, as just described. These are called
unitigs.

2. Repeat resolution: Then, at a later stage, one attempts to reconstruct the repetitive sequence that lies
between such unitigs.

Reads are sampled from a source sequence that contains repeats:

reads:

source:

repeats

Reads that form consistent chains in the overlap graph are assembled into unitigs and the remaining
“repetitive” reads are processed later:

layouts

untigs:

:

reads in repeats:

10014 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

10.19 Unique unitigs

As defined above, a “unitig” is obtained as a chain of consistently overlapping reads. However, a unitig does
not necessarily represent a segment of unique source sequence. For example, its reads may come from the
interior of different instances of a long (many copy) repeat:

reads:

source: R R’ R"

non−unique unitig
unique unitig

Non-unique unitigs can be detected by virtue of the fact that they contain significantly more reads than
expected.

10.20 The Poisson distribution

In probability theory and statistics, the Poisson distribution (pronounced, after Simeon-Denis Poisson (1781-
1840)) is a discrete probability distribution that expresses the probability of a number of events occurring in a
fixed

period of time if these events occur with a known average rate and independently of the time since the
last event. The Poisson distribution can also be used for the number of events in other specified intervals such
as distance, area or volume.

If the expected number of occurrences in this interval is λ, then the probability that there are exactly k
occurrences (k being a non-negative integer, k = 0, 1, 2, . . .) is equal to

f (k; λ) =
λke−λ

k!
,

where

• e is the base of the natural logarithm (e � 2.71828)

• k is the number of occurrences of an event - the probability of which is given by the function

• k! is the factorial of k

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10015

• λ is a positive real number, equal to the expected number of occurrences that occur during the given
interval. For instance, if the events occur on average 4 times per minute, and you are interested in the
number of events occurring in a 10 minute interval, you would use as your model a Poisson distribution
with λ = 10 · 4 = 40.

As a function of k, this is the probability mass function. The Poisson distribution can be derived as a limiting
case of the binomial distribution. The Poisson distribution can be applied to systems with a large number of
possible events, each of which is rare. A classic example is the nuclear decay of atoms.

(Cited from http://en.wikipedia.org/wiki/Poisson_distribution, with modifications.)

10.21 Identifying unique unitigs

Under assumption that the sampling of reads from the target is done uniformly, we can model the arrival of
the fragments start positions along the target sequence by a Poisson process.

Let R be the number of reads and G the estimated length of the source sequence. Then we expect on
average R/G arrivals of fragments per base. This is called the rate of the Poisson process.

In a Poisson process with rate λ, the distances between the sites are independent exponentially distributed
random variables with mean 1/λ; and the probability that we have k sites in an interval [s, s + t] is e−λt(λt)k/k!.
[Waterman, p. 89]

Let ρ be the length of fragments and assume ρ � G. One can show that the fraction of G covered by k
fragments is e−cck/k!, where c = Rρ/G.

For a unitig with k reads and approximate length ρ, the probability of seeing the k start positions in the
interval of length ρ is (neglecting border effects)

e−cck

k!
,

with c := ρR
G , if the unitig is not oversampled, and

e−2c(2c)k

k!
,

if the unitig is the result of collapsing two repeats.
(see Mike Waterman’s book, page 148, for details)
The arrival statistic used to identify unique unitigs is the (natural) log of the ratio of these two probabilities,

c − (log 2)k.

The sign of the arrival statistic tells which of the two cases is more likely. However, for the purpose of unitigging,
we want to be really sure, thus a unitig is deemed unique only if its arrival statistic has a positive value of 10 or
more.

10.22 Mate pairs

Fragment assembly of reads produces contigs, whose relative placement and orientation with respect to each
other is unknown.

http://en.wikipedia.org/wiki/Poisson_distribution

10016 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

Recall that modern shotgun sequencing protocols employ a so-called double barreled shotgun. That is,
longer clones of a given fixed length are sequenced from both ends and one obtains a pair of reads, a mate pair,
whose relative orientation and mean µ (and standard deviation σ of) length are known:

(µ,σ)
Typical clone lengths are µ = 2kb, 10kb, 50kb or 150kb. For clean data, σ ≈ 10% of µ. Mate pair mismatching

is a problem and can effect 10 − 30% of all pairs.

10.23 Scaffolding

Consider two reconstructed contigs. If they correspond to neighboring regions in the source sequence, then
we can expect to see mate pairs to span the gap between them:

c1 c2

Such mate pairs determine the relative orientation of both contigs, and we can compute a mean and
standard deviation for the gap between them. In this case, the contigs are said to be scaffolded2:

10.24 Determining the distance between two contigs

Given two contigs c1 and c2 connected by mate pairs m1,m2, . . . ,mk. Each mate pair gives as an independent
estimate (µ, σ) for the true distance between the two contigs.

Following standard statistical practice, these measurements (µ1, σ1), (µ2, σ2), . . . , (µk, σk) of the distanc
between the two contigs c1 and c2 can be combined by taking a weighted average, using the reciprocal
variances as weights, as follows:

2engl. scaffold = dt. GerÃ 1
4 st

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10017

Let p :=
∑ li
σ2

i

and q =
∑ 1
σ2

i

. Then the distance between c1 and c2 is estimated as

µ :=
p
q
, with standard deviation σ :=

1
√

q
.

Here is an example:

,

,
,

,

D,σ

l1σ1

l2σ2

l3 σ3

l4 σ4 2k

10k

10k

2k mate pair

mate pair

mate pair

mate pair

It is possible that the mate pairs between two contigs c1 and c2 lead to significantly different estimations
of the distance from c1 and c2. In practice, only mate pairs that confirm each other, i.e. whose estimations are
within 3σ of each other are considered together in a gap estimation. (The “3” is a magic constant.)

10.25 The significance of mate pairs

Can we really rely on mate pair information? Given two contigs c1 and c2.

• If there is only one mate pair between the two contigs, then due to the high error rates associated with
mate pairs, this is not significant.

• If, however, c1 and c2 are unique unitigs, and if there exist two different mate pairs between the two that
give rise to the same relative orientation and similar estimations of the gap size between c1 and c2, then
this the scaffolding of c1 and c2 is highly reliable.

This is because that probability that two false mate pairs occur that confirm each other, is extremely small.

Example.
Let the sequence length be G = 120MB, for example (Drosophila). For simplicity, assume we have 5-fold
coverage of mate pairs, with a mean length of µ = 10kb and standard deviation of σ = 1kb.

Consider a false mate pair m1 = (f1, f2) with reads f1 and f2. Let N1 and N2 denote the two intervals (in the
source sequence) of length 3σ centered at the starts of f1 and f2, respectively. Both have length 6kb.

Consider a second false mate m2 = (g1, g2) with g1 inside N1. Then the probability that g2 lies in N2 is
roughly

6kb
120MB

=
1

20000
.

10018 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

N1 N2
source

f2f1

g1
m1

m2

Assume that the reads have length 600. Assume that 10% of all mate pairs are false. At 5-fold coverage,
the interval N1 is covered by about 5 · 6000

600 = 50 reads, of which ≈ 5 have false mates.

Hence, the probability that m1 is confirmed by some second false mate pair m2 is

≈ 5 ·
1

20000
=

1
4000

= 0.00025.

This does not take into account that N1 certainly contains many reads with correct mate pairs.

10.26 The overlap-mate graph

Given a set of reads F = { f1, f2, . . . , fR} and let G denote the overlap graph associated with F .

Given one set (or more) Mµ,σ = {m1, . . . ,mk} of mate pairs mk = (fi, f j), with mean µ and standard deviation
σ.

Let fi and f j be two mated reads represented by the edges (si, ei) and (s j, e j) in G. We add an undirected
mate edge between ei and e j, labeled (µ, σ), to indicate that fi and f j are mates and thus obtain the overlap-mate
graph:

−40
f1

f2f6

f3
−250

−330

−60

−50

−320

−95

−80

f5 f4

f7

f8

(2000,200)

(10000,1000)

The overlap-mate graph is good for visualization, but it turns out that a more useful concept is obtained
by “lifting” the mate pair information to the level of contigs.

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10019

10.27 The contig-mate graph

Given a set of F of fragments and a set of assembled contigs C = {c1, c2, . . . , ct}. Represent each assembled
contig ci by a contig edge with nodes si and ei. Then, add mate edges between such nodes to indicate that the
corresponding contigs contain fragments that are mates.

For example:

,

,
,

,

D,σ

l1σ1

l2σ2

l3 σ3

l4 σ4 2k

10k

10k

2k mate pair

mate pair

mate pair

mate pair

leads to:

,l2 σ2

,l3 σ3
,l4 σ4

c1 c2

,l1 σ1

10.28 Edge bundling

The complexity is further reduced by edge bundling. Consider two contigs c1 and c2, joined by several mate pair
edges m1, . . . ,mk between node e1 and s2. Every maximal subset of mutually confirming mate edges is replaced
by a single bundled mate edge e, whose mean length µ and standard deviation σ are computed as discussed
above. Any such bundled edge is again labeled by a pair (µ, σ).

(A heuristic is used to compute these subsets: Repeatedly bundle the median-length simple mate edge
with all mate edges within three standard deviations of it, until all simple mate edges have been bundled.)

Additionally, we set the weight w(e) of any mate edge to 1, if it is a simple mate edge, and to
∑k

i=1 w(ei), if it
was obtained by bundling edges e1, . . . , ek.

For example, consider the following graph:

10020 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

Assuming that mate edges drawn together have similar lengths and large enough standard deviation,
edge bundling will produce the following graph:

w=2

w=2

w=3
w=4

10.29 Transitive edge reduction

Yet another trick used for simplification is transitive edge reduction. Consider the previous graph with some
specific edge lengths:

l=
µ= µ=1000

2000

40

µ=4200

1000µ=

e

c1 f

g

c2
h c3

The mate edge e gives rise to estimation of the distance from the right node of contig c1 to the left node of
c3 that is similar to the one obtained by following the path P=(g, c2, h). Based on this transitivity property we
can reduce the edge e on to the path p:

to obtain:

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10021

w=3+2
w=4+2

w=2

Consider two nodes v and w that are connected by an alternating path P = (m1, b1,m2, . . . ,mk) of mate-edges
(m1,m2, . . .) and contig edges (c1, c2, . . .) from v to w, beginning and ending with a mate-edge. We obtain a
mean length and standard deviation for P by setting

l(P) :=
∑
mi

µ(mi) +
∑

ci

l(ci)

and

σ(P) :=
√∑

mi

σ(mi)2 .

We say that a mate-edge e from v to w can be transitively reduced on to the path P, if e and P approximately
have the same length, i. e., if | µ(e)− l(P) |≤ C ·max{σ(e), σ(P)} for some constant C, typically 3. If this is the case,
then we can reduce e by removing e from the graph and incrementing the weight of every mate-edge mi in P by
w(e).

In the following, we will assume that any contig-mate graph considered has been edge-bundled and
perhaps also transitively reduced to some degree.

10.30 Happy mate pairs

Consider a mate pair m of two reads fi and f j, obtained from a clone of mean length µ and standard deviation
σ:

fi
(µ,σ) f j

Assume that fi and f j are contained in the same contig or scaffold of an assembly. We call m happy, if fi
and f j have the correct relative orientation, i.e. the arrows are facing each other, and both are at approximately
the right distance, i.e.,

∣∣∣µ− |si − s j|
∣∣∣ ≤ 3σ. Otherwise, m is unhappy. Two unhappy mates (due to their orientation)

are highlighted here:

c1 c2

10022 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

10.31 Ordering and orientation of the contig-mate graph

Given a collection of contigs C = {c1, c2, . . . , ck} constructed from a set of reads F = { f1, f2, . . . , fR}, together with
the corresponding mate pair information M. Let G = (V,E) denote the associated contig-mate graph.

An ordering (and orientation) of G (or C) is a map φ : V → N such that | φ(bi) − φ(ei) |= l(ci) for all contigs
ci ∈ C. In other words, it is an assignment of coordinates to all nodes that preserves contig lengths.

Additionally, we require {φ(bi), φ(ei)} , {φ(b j), φ(e j)} for any two distinct contigs ci and c j.

10.32 Happiness of mate edges

Let G = (V,E) be a contig-mate graph and φ an ordering of G.

Consider a mate-edge e with nodes v and w. Let ci denote the contig edge incident to v and let c j denote
the contig edge incident to w. Let v′ and w′ denote the other two nodes of ci and c j, respectively. We call e happy
with respect to φ, if

1. ci and c j have the correct relative orientation, and

2. the distance between v and w is approximately correct.

In other words, we require that either

1. φ(v′) ≤ φ(v) and | φ(w) − φ(v) − µ(e) |≤ 3σ(e) and φ(w) ≤ φ(w′), or

2. φ(w′) ≤ φ(w) and | φ(v) − φ(w) − µ(e) |≤ 3σ(e) and φ(v) ≤ φ(v′).

Otherwise, e is unhappy.

10.33 Example

Given the following contig-mate graph:

c4

c2

2700

1000

c1

1500

c5

1500 1500
2500

900

400

1000
5000

c3
900

An ordering φ assigns coordinates φ(v) to all nodes v and thus determines a layout of the contigs:

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10023

(s2)φ φ(s4) (e1)φ (s1)φ (s3)φ (e3)φ (s5)φ(e2)φ (e4)φ (e5)φ

c2 c1 c3 c5c4
1500

900
10001500

2700

5000

1000

2500

900400

1500

10.34 Spanning tree heuristic for the Contig Ordering Problem

An ordering φ that maximizes the number of happy mate edges is a useful scaffolding of the given contigs.

The simplest heuristic for obtaining an ordering is to compute a maximum weight spanning tree for the
contig-mate graph and use it to order all contigs, similar to the read layout problem.

c1 c2 c3 c4 c5 c6 c7

false mate edge

source

Unfortunately, this method does not work well in practice, because a single false mate edge can lead to
incorrect interleaving of contigs from completely different regions of the source sequence:

c5 c6 c7

c1 c2 c3 c4

10.35 Representing an ordering in the mate-contig graph

By the definition given above, an ordering is an assignment of coordinates to all nodes of the contig-mate graph
that corresponds to a scaffolding of the contigs.

When we are not interested in the exact coordinates, then the relative order and orientation of the contigs can

10024 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

be represented as follows:

Given a contig-mate graph G = (V,E). A set S ⊆ E of selected edges is called a (valid) scaffolding of G, if it
has the following two properties:

• every contig edge is selected, and

• every node is incident to at most two selected edges.

Thus, a scaffolding of G is a set of non-intersecting selected paths, each representing a scaffolding of its
contained contigs.

The following example contains two chains of selected edges representing scaffolds s1 = (c1, c2, c3, c4) and
s2 = (c5, c6, c7):

c1 c2 c3 c4

c5 c6 c7

However, to be able to represent the interleaved scaffolding discussed earlier, we need to add some inferred
edges (shown here as dotted lines) to the graph:

c1 c2 c3 c4

c5 c6 c7

10.36 Greedy path-merging

Given a contig-mate graph G = (V,E). The greedy path merging algorithm is a heuristic for solving the Contig
Ordering Problem. It proceeds “bottom up”, maintaining a valid scaffolding S ⊆ E, as follows:

Initially, all contig edges c1, c2, . . . , ck are selected, and no other edges. At this stage, the graph consists of k
selected paths P1 = (c1), . . . ,Pk = (ck).

Then, in order of decreasing weight, we consider each mate edge e = {v,w}:

If v and w lie in the same selected path Pi, then e is a chord of Pi and no action is necessary.

If v and w are contained in two different paths Pi and P j, then:

1. We attempt to merge the two paths (as will be described soon) to obtain a new path Pk, but

2. We accept such a merge only if the increase of H(G), the number of happy mate edges, is larger than the
increase of U(G), the number of unhappy ones.

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10025

10.37 The greedy path-merging algorithm

Algorithm Given a contig-mate graph G. The output of this algorithm is a node-disjoint collection of selected
paths in G, each one defining an ordering of the contigs whose edges it covers.

begin
Select all contig edges.
for each mate-edge e in descending order of weight:

if e is not selected:
Let v,w denote the two nodes connected by e
Let P1 be the selected path incident to v
Let P2 be the selected path incident to w
if P1 , P2 and we can merge P1 and P2 (guided by e)

to obtain P:
if H(P) − (H(P1) + H(P2)) ≥ U(P) − (U(P1) + U(P2)):

Replace P1 and P2 by P
end

10.38 Merging two paths

Given two selected paths P1 and P2 and a guiding unselected mate-edge e0 with nodes v0 (incident to P2) and
w0 (incident to P1). Merging of P1 and P2 is attempted as follows:

(a)

w0

P2

P1

e0
h

v0

c11 c12

c21 c22 c23 c25c24

c13 c14

c26

c15

c27

(b)
P2

P1

e0 e1

v1

w1

w0
g0f0

h

v0

c11

c21 c22

c12

c23 c24

c25

c13

c14

c26 c27

c15

(c)
P2

P1

e0 e1

v1w0 w1

e2

w2

v2f1 g1g0f0

h

v0

c15

c27c14c26c13

c25

c24c23

c12

c22

c11

c21

This algorithm returns true, if it successfully produced a new selected path P containing all contigs edges
in P1 and P2, and false, if it fails.

Merging proceeds by “zipping” the two paths P1 and P2 together, first starting with e0 and “zipping” to
the right. Then, with the edge labeled h now playing the role of e0, zipper to the left. Merging is said to fail,
if the positioning of the “active” contig c1

i implies that it must overlap with some contig in P2 by a significant
amount, but no such alignment (of sufficiently high quality) exists.

10026 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

10.39 Example

Here are we are given 5 contigs c1, . . . , c5, each of length l(ci) = 10000:

w=1, µ=12000

w=5,µ=12000

w=1, µ=34000

w=2,µ=1000w=3,µ=1000

w=4,µ=12000

c2

c1

c3

c4

c5

w=1, µ=12000

w=5,µ=12000

w=1, µ=34000

w=2,µ=1000w=3,µ=1000

w=4,µ=12000

c2

c1

c3

c4

c5

w=1, µ=12000

w=5,µ=12000

w=1, µ=34000

w=2,µ=1000w=3,µ=1000

w=4,µ=12000

c2

c1

c3

c4

c5

w=1, µ=12000

w=5,µ=12000

w=1, µ=34000

w=2,µ=1000w=3,µ=1000

w=4,µ=12000

c2

c1

c3

c4

c5

w=5,µ=12000

w=1, µ=34000

w=3,µ=1000

w=4,µ=12000

c2

c1

c3

c4

c5

w=1, µ=12000

w=2,µ=1000

w=5,µ=12000

w=1, µ=34000

w=3,µ=1000

w=4,µ=12000

c2

c1

c3

c4

c5

w=1, µ=12000

w=2,µ=1000

µ~1000
µ~1000

The final scaffolding is (c1, c2, c3, c5, c4).

10.40 Repeat resolution

Consider two unique unitigs u1 and u2 that are placed next to each other in a scaffolding, due to a heavy mate
edge between them:

u2u1

We consider all non-unique unitigs and singleton reads that potentially can be placed between u1 and u2
by mate edges:

u2u1

Different heuristics (and manual inspection by experts, for the remaining cases) are used to explore the
corresponding local region of the overlap graph in an attempt to find a chain of overlapping fragments that
spans the gap and is compatible with the given mate pair information:

u2u1

Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12 10027

10.41 Multialignment

In a last step we have to compute a consensus sequence for each contig based on the layout of the fragments
(this can also be done right after computing the contigs/unitigs).

Read 1: ACGCTCCAACCGCTAATACG

Read 2: ATCGCTAATCCACGCCCGCCCCGC

Read 3: AAAC-CTCCAACCG

Read 4: TGCGCGCCCGCCCCGAAACCGC

Consensus: AAAC-CTCCAACCGCTAATGCGCGCCCGCCCCGAAACCGC

10.42 Summary

Given a collection F = { f1, f2, . . . , fR} of reads and mate pair information, sampled from a unknown source
DNA sequence. Assembly proceeds in the following steps:

1. compute the overlap graph, e.g. using a seed-and-extend approach,

2. construct all unitigs, e.g. using the minimal spanning tree approach,

3. scaffold the unitigs, e.g. using the greedy-path merging algorithm,

4. attempt to resolve repeats between unitigs, and

5. compute a multi alignment of all reads in a given contig to obtain a consensus sequence for it.

Note that the algorithms for steps (2) and (3) that are used in actual assembly projects are much more sophisticated
than ones described in these notes.

10.43 A WGS assembly of human (Celera)

Input: 27 million fragments of av. length 550bp, 70% paired:

5m pairs of length 2kb
4m pairs of length 10kb

0.9m pairs of length 50kb
0.35m pairs of length 150kb

Celera’s assembler uses approximately the following resources:

Program CPU Max.
hours memory

Screener 4800 2-3 days on 10-20 computers 2GB
Overlapper 12000 10 days on 10-20 computers 4GB
Unitigger 120 4-5 days on a single computer 32GB
Scaffolder 120 4-5 days on a single computer 32GB
RepeatRez 50 Two days on a single computer 32GB
Consensus 160 One day on 10-20 computers 2GB

Total: ≈ 18000 CPU hours.

10028 Sequence Assembly, by Daniel Huson, Knut Reinert, Clemens GrÃPpl, December 5, 2011, 10:12

The size of the human genome is ≈ 3Gb. An unpublished 2001 assembly of the 27m fragments has the
following statistics:

• The assembly consists of 6500 scaffolds that span 2776Mb of sequence.

• The spanned sequence contains 150000 gaps, making up 148Mb in total.

• Of the spanned sequence, 99.0% is contained in scaffolds (or contigs?) of size 30kb or more.

• Of the spanned sequence, 98.7% is contained in scaffolds (or contigs?) of size 100kb or more.

	Genome Sequencing
	The technologies
	The technologies
	The big picture – From molecule to sequence
	Shotgun sequencing data
	The fragment assembly problem
	Sequence assembly in three stages
	The overlap phase
	Overlap alignment
	Faster overlap detection
	True and repeat-induced overlaps
	Avoiding repeat-induced overlaps
	Celera's overlapper
	The overlap graph
	Example
	The layout phase
	Repeats and the layout phase
	Unitigging
	Unique unitigs
	The Poisson distribution
	Identifying unique unitigs
	Mate pairs
	Scaffolding
	Determining the distance between two contigs
	The significance of mate pairs
	The overlap-mate graph
	The contig-mate graph
	Edge bundling
	Transitive edge reduction
	Happy mate pairs
	Ordering and orientation of the contig-mate graph
	Happiness of mate edges
	Example
	Spanning tree heuristic for the Contig Ordering Problem
	Representing an ordering in the mate-contig graph
	Greedy path-merging
	The greedy path-merging algorithm
	Merging two paths
	Example
	Repeat resolution
	Multialignment
	Summary
	A WGS assembly of human (Celera)

