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Motif finding

This exposition was developed by Knut Reinert and Clemens Gropl. It is based on the following sources, which
are all recommended reading:

1. Buhler, Tompa: Finding Motifs using Random Projections, RECOMB 2001, 69-75

2. Price, Ramabhadran, Pevzner: Finding subtle motifs by branching from sample strings, Bioinformatics,
2003, 149-155

3. Durbin, Eddy, Krogh, Mitchison: Biological sequence analysis, Probabilistic models of proteins and nucleic
acids, pages 323f

4. Bailey, Elkan: The value of prior knowledge in discovering motifs in MEME, Proc. Int. Conf. Intell. Syst.
Mol. Biol., 1995, 21ff

5. Mount: Bioinformatics, pages 177 ff.
6. Pevzner, Pavel: Computational Molecular Biology, 2000, chapter 8.5 (“Frequent Words in DNA”)

7. http://en.wikipedia.org/wiki/Em_algorithm
Motivation

The goal of motif finding is the detection of novel, unknown signals in a set of sequences. For example you might
want to detect transcription factor binding sites in a genome, but do not know what they look like.

However, one can be quite certain that such motifs are never conserved exactly but only approximately. This fact
makes the problem difficult (exercise: how can you compute a solution if no errors occur?)

Lets have a look at a toy example that already illustrates the difficulty of the problem at hand:

0 5 10 15 20 25 30 35 40 45

agcaatcgcccgtattccgttaaagectgcectcecgetagetcgaagetg
ggtcttgcgtgcatcgctaagctagcaaccgctagcatgegetagect
gattcgaataggcaaacgcacgaagtccgttaaagctagcatcgatcg
gctagctagcactattccgttttagecgatccgectagecagagagatce
ccgctcgatcgtageggatcgctageatttegttatcegtgecatageg

Do you see the implanted motif of length 10 with 2 errors?
Most algorithms can find the correct motif and the correct implanted positions.

Here is the solution.

0 5 10 15 20 25 30 35 40 45

agcaatcgccCGTATTCCGTtaaagectgectcecgctagetcgaagetg
GGICTTGCGTgcatcgctaagctagcaaccgctagecatgegetagect
gattcgaataggcaaacgcaCGAAGTCCGTtaaagctagcatcgatceg
gctagctagcACTATTCCGTtttagecgatccgectageccagagagatce
ccgctcgatcgtageggatcgetageatttCGITATCCGTgecatageg
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We want of course to do this in an automated way. A paper by Pevzner sparked a lot of research in this area and
many subsequent paper adopted his formal definition of the motif searching problem and use it as a benchmark
problem.

Definition

Definition 1. Planted (/, d)-motif problem: Assume there is a fixed motif m of length /. The problem is to find
m, given t sequences of length n, each containing a variant m’ of m with the property that m differs from m’ in
exactly d positions.

In the original paper Pevzner et.al. considered it hard to solve the (15,4)-motif problem in 20 sequences of
length 600 and presented two algorithms WINNOWER and SP-STAR that were able to solve the problem. He
failed however for the (14,4), (16,5), and (18,6) problem. (Note that we are also interested in occurrences with
less then d differences. Requiring d differences is for the sake of benchmarking).

Can we get a good feeling of how difficult the different instances of the problem are?
Random background

It is quite illustrative to have a close look at the expected number of (/, d)-motifs in the problem. Lets for simplicity
assume that the background sequences are i.i.d. distributed. Then the probability that a given /-mer C occurs
with up to d substitutions at a given position of a random sequence is:

d N 3 i 1 1—i
Pd = /Z(; <i>(4) (Z)

The expected number of length / motifs that occur with up to d substitutions at least once in each of the t random
length n sequences is approximately

E(,d) ~4'(1—(1—pg)""")".
However this is only a heuristic estimate. .. can you see the error?
The above formulas are only heuristic estimates since they do not model overlapping motifs, and — in general

— the assumption of i.i.d. background distribution is not true. Nevertheless the formula gives a good estimate of
the hardness of the respective problem.

For example we can estimate that 20 random sequences of length 600 are expected to contain more than one
(9, 2)-motif by chance, whereas the chances of finding a random (10, 2)-motif are less than 10~".

This is a stunningly sharp boundary; a fact that should be kept in mind.

Pevzners book contains an interesting discussion of the occurrence distribution and the “overlapping words
paradox”. For simplicity we consider exact matches. To avoid issues with margin effects, assume that the text is
circular and has length n. Let | be the alphabet size. Let k be the size of the pattern.

Then the probability that at position i in the text there is an occurrence of the patternis p := 1//% and the expected
number of occurrences is np.
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However the variance has a much more complicated formula and depends on the pattern. Not all patterns have
the same variance! An intuitive explanation is the following: Consider two patterns P = AAAA and P’ = ACGT. If
there is an occurrence of P at position i, then the conditional probability for an occurrence of P ati+1is 1//. But
for P’, the conditional probability is zero — all occurrences of P’ must be non-overlapping.

This is formalized in the autocorrelation polynomial Kpp. For two patterns A and B, both of length k, the correla-
tion polynomial is defined as

k-1
Ka(x) =) cix',
i=0

where the coefficient ¢; is 1 if the (k — i)-prefix of B is identical to the (k — i)-suffix of A, and 0 otherwise.

Now, the variance of the number of occurrences of a pattern P in a circular text is

n 1 2k — 1
Var(P) = & (2-KPP(/) —1 —/k> :

Actually, the proof is not very complicated. The analysis of word occurrences has also been generalized to
approximate matches.

Types of algorithms

We can use two main components to classify motif searching algorithms. The first distinction can be made on
whether the algorithms search in the space of starting positions, or whether they search in motif space starting
from some suitable initial motifs. Most modern algorithms do the latter.

The second distinction can be made upon whether the algorithms work internally with patterns or with profiles.
The second approach has some advantages in finding motifs with many degenerate positions but are in general
somewhat more costly.

Types of algorithms

Most algorithms derive at the end of the first stage a profile as a motif (whether they use profiles directly or
construct it at the end of the pattern based search).

Then they usually refine the pattern using some common local strategies like Gibbs sampling, exhaustive local
search, or quite often the Expectation-Maximization algorithm.

We will present two fast and successful algorithms, PROJECTION by Buhler and Tompa which is a pattern
based approach that has a refinment stage in the end using the EM algorithm, and if time allows an algorithm
py Price et al. that comes in two flavors PATTERNBRANCHING and PROFILEBRANCHING.

The MEME models

The different types of sequence model supported by MEME make differing assumptions about how and where
motif occurrences appear in the dataset.
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e The simplest model type is called OOPS, since it assumes that there is exactly One Occurrence Per
Sequence of the motif in the dataset.

e A generalization is called ZOOPS, which assumes Zero Or One Motif Occurrences Per Sequence.

e Finally, TCM (Two-Component Mixture) models assume that there are zero or more non-overlapping oc-
currences of the motif in each sequence in the dataset.

A motif is modeled by a sequence of discrete random variables parameters give the probabilities of each of the
different letters (4 in the case of DNA, 20 in the case of proteins) occurring in each of the different positions in
an occurrence of the motif.

The background positions in the sequences are modeled by a single discrete random variable for each of the
different letters. Hence the complete model can be see as a 4 x (/+ 1) profile in the case of nucleotides.

Consider searching for a single motif in a set of sequences by fitting one of the three sequence model types to
it. The dataset consists of n sequences, each of length /.

The starting point(s) of the occurrence(s) of the motif (if any) in each of the sequences are unknown and are the
"missing information”.

The EM algorithm tries to optimize the chosen model for the (M-step) as well as the estimated starting positions
(E-step). For details consider the MEME paper (reference in the beginning).

Since the EM algorithm only converges to a local maximum, it is important to have good starting positions. To
compute these we can use algorithms like PROJECTION, PATTERNBRANCHING, or PROFILEBRANCHING,
described later.

Example

Lets look at a small example in the context of motif finding. Assume we are given the data x = x1, X2, X3 as follows.
It is the observed data.

1 2 3 4 5 6
xx|A C A G C A
x| A G G C A G
x3| T € A G T C

We are missing the start positions z; of the hidden motif and want to represent them by a matrix w where w;; is
the probability that the pattern starts at position j in sequence i.

Assume that a motif finding algorithm resulted in the following model parameters 6 which in our case is a
4 x (/+1) matrix p describing in the 0th column the background probabilities of the 4 nucleotides and in the other
| positions the probabilities that a certain letter is in the motif.

Assume that our motif has length three and is
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0 1 2 3
02501 05 02
025|033 02 0.1
02503 01 04
02503 02 03

4 O O >

We use this initial guess now to estimate the missing data w.

By our assumption that each sequence contains exactly one occurrence of the motif, we can write

P(x|zj=1,p)

/

This yields the following matrix w:

1 2 3 4
0.0520 | 0.7790 | 0.0130 | 0.1558
0.1108 | 0.0416 | 0.0166 | 0.8390
0.0170 | 0.8547 | 0.0427 | 0.0855

Now we estimate the missing data using our initial model. We can then refine the model by assuming the
probabilities for the motif starting positions are correct.

If we ask now about the probability of each letter we can re-estimate the new model by updating the frequencies
of each letter with the weights given by w. For example for the first pattern position being a C we add wy o+ W 4 +
w3 to the previous frequency, that is p’a1 =0.7790+0.8390+0.8547 + 0.3 and so on. Then the new frequencies

/
Pei _ This results in:

need to be normalized, that is p¢ 1 = S T
i=A,C,G, T Fj1

0 1 2 3
A 0.079 0.647
C 0.692 0.198
G 0.150 0.093
T 0.079 0.062

As one can see the new model tends to model the motif CAG quite well. Now we will discuss algorithms that
produce a good starting model.

PROJECTION

PROJECTION is a probabilistic algorithm that iteratively increases the chance that it finds the correct motif.

It has three key parameters:

e the projection size k.

e the bucket threshold s
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e the number of independent trials m

Given these parameters, which we will explain later, the algorithm is quite simple.

(1) PROJECTION(k, s, m,sq,...,St);

2) fori=1to mdo

(3) choose randomly k different positions Ik C {1,...,/};
4) for each I-mer x € s, ..., s; do

(5) /I h(l, x) is a hash function using the positions in Iy;
(6) compute h(lx, X);
(7) store x in the hash bucket h(lx, x);
(8) od
9) for each bucket with y > s elements do
(10) refine bucket with EM algorithm;
(11) od
(12) od

(13) choose consensus pattern of best bucket;

What is the key idea of the algorithm?

For a fixed choice of I, positions and the unknown (planted) motif M, let us call the bucket h(M) the planted
bucket. If k < | —d, then, because of the randomness of I, there is a good chance that a humber of the ¢t
planted instances of M will hash to the same bucket.

If we choose the number of buckets large enough, then the planted bucket should have a significantly higher
count than a bucket containing random /-mers.

The outcome of the PROJECTION algorithm is dependent on the distribution of the errors in the copies of the
motif and the choices of Ix. To increase the chance of success, we repeat the hashing using different random
selections of I, for m times.

We do not know which bucket is the planted bucket. Therefore we inspect each bucket that has more than s
elements.

Each of those buckets is then refined using the EM algorithm (other local searches are possible).

Finally, the consensus sequence of the bucket with the highest expected value is chosen as the motif.

Next we discuss how the parameters k and s should be chosen.

Choice of k and s

For the above argument to work we obviously have to choose k < I — d, since only then do we have a chance
that a number of the planted projections hashes into the same bucket. In particular the planted instances for
which the d mutated positions are disjoint from the k hash positions will hash to the planted bucket.
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On the other hand we do not want to choose k too small to avoid the contamination of the planted bucket by
random background sequences. Since we are hashing t(n— /+1) I-mers into 4¥ buckets, the average bucket will
contain less than one random /-mer if we choose 4% > t(n—/+1).

If we can do this, then we are able to choose a relatively low bucket size threshold s ~ 3 or 4.
Choice of m

Finally we come to the determination of the number m of independent trials to run. In the experiments they
choose m such that the probability is at least g = 0.95 that the planted bucket contains s or more planted motif
instances in at least one of the m trials. We determine m with the following argument:

Let p(/, d, k) be the probability that a given planted motif instance hashes to the planted bucket, that is, p(/, d, k) =
("% /(4)- (For example p(15,4,8) = 165/6435 ~ 0.026 or (P(19,6,8) = 715/92378 ~ 0.0077.)

Let t be an estimate of the number of sequences containing a planted motif instance (t = t in the challenge
problem).

Then the probability that fewer than s planted instances hash to the planted bucket in a given trial is B; 5 4. (S),
where B; ;(s) is the probability that there are fewer than s successes in t independent Bernoulli trials, each trial
having probability p of success.

Thus the probablity that s or more planted instances hash to the planted bucket in at least one trial is
1— (Bt pa,0(8)™
We want this entity to be larger or equal to g. Hence it follows:

I
— 109(By p(1,d.6))(S))

Given the choices of s and k usually a couple of hundred trials suffices.
Motif refinement

Now we have found a set of buckets that needs to be explored to recover the planted motif.

PROJECTION starts the refinement using the EM algorithm based on the following, simple probabilistic model.

e An instance of some length / motif occurs only once per input sequence.

e Motif instances are generated from a 4 x [ weight matrix model W whose (i, j)th entry gives the probability
that base i occurs at position j of an instance, independent of its other positions.

e The remaining n— [ residues in each sequence are choosen randomly and independently according to
some background nucleotide distribution.

Now let S be the set of t input sequences and let P be the background distribution.
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The EM-based refinement seeks a weight matrix model W* that maximizes the likelihood ratio Pr(S |
W*, P)/Pr(S| P), that is, a motif that explains the observed sequences much better than the background model
alone.

Starting from some initial guess Wy the EM algorithm will converge against a local maximum of the above ratio.

PROJECTION performs EM refinement on every bucket with at least s elements. It forms an initial guess W,
from a bucket h as follows:

Set Wh(i,j) to be the frequency of base i among the jth positions of all /-mers in h. This guess forms a centroid
for h. In order to avoid zero entries in Wy, a Laplace correction b; is added to W (i, ), where b; is the background
probability of nucleotide i in the input.

If W is the candidate motif model refined from W}, then we compute the motif from the model as follows:

e From each input sequence choose the /-mer sequence x with the /argest likelihood ratio Pr(x | W;')/Pr(x |
P). The multiset T of -mers represents the motif in the input that is most consistent with W;. Let Cr be
the consensus of T, and let s(T) be the number of elements of T whose Hamming distance to Cr exceeds
d.

e For biological examples PROJECTION outputs the T that minimizes s(T) over all buckets and trials.

For the challenge problem, T is further refined heuristically. PROJECTION computes the consensus C of the
sequences in T, and defines the score of T to be the number of sequences in T whose Hamming distance to C
is at most d.

Now let T’ be the set that contains the I-mer from each input sequence that is closest in Hamming distance to
C. If the score of T’ is greater than the score of T, they replace T by T’ and repeat. This procedure converges
usually after a few iterations.

Performance

The following table gives an overview of the performance of PROJECTION compared to other motif finders on
the (/, d)-motif problem. The measure is the average performance defined as | KNP | /| KUP | where K is
the set of the / x t residue positions of the planted motif instances, and P is the corresponding set of positions
predicted by the algorithm.

I | d| Gibbs | WINNOWER | SP-STAR | PROJECTION
10 | 2| 0.20 0.78 0.56 0.82
11|12 | 0.68 0.90 0.84 0.91
12 | 3| 0.03 0.75 0.33 0.81
13 |3 | 0.60 0.92 0.92 0.92
14 | 4 | 0.02 0.02 0.20 0.77
1514 | 0.19 0.92 0.73 0.93
16 | 5| 0.02 0.03 0.04 0.70
17 15| 0.28 0.03 0.69 0.93
18 | 6 | 0.03 0.03 0.03 0.74
19 | 6 | 0.05 0.03 0.40 0.96
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PATTERNBRANCHING

PATTERNBRANCHING is a deterministic algorithm that is pattern based and uses a greedy local search to find
the correct motif. It considers each /-mer as a potential candidate for the pattern P = pq, ..., p;.

Starting from an initial guess Ay it constructs a path of patterns Ag — Ay — A> — ... — A, with the property that
pattern A; is in the Hamming distance 1-neighborhood D_;(A;_1) of pattern A;_1. (D-«(A) is the set of patterns
of distance exactly k of A.)

The path is constructed by iteratively applying the function BestNeighbor which maps pattern A to the best
neighbor in D_1(A). Finally Ak is scored and compared to the outcome computed with other starting positions.

Two questions need to be adressed.

1. Given a pattern A, how do we score it?

2. How do we compute BestNeighbor(A)?

First, we score a pattern A using its total distance from the sample. For each sequence S; in the sample § =
{S1,...,Sn}, let d(A, S;) = min{d(A,P) | P € S;}, where P denotes an /-mer. Then the total distance of A from
the sample S is d(A,S) = Lgcsd(A, S)).

Second, BestNeighbor (A) is the pattern B € D_;(A) with the lowest total distance d(B,.S).

(1) PATTERNBRANCHING(S, /, k);
(2) bestMotif = arbitrary motif pattern;
(3) bestScore = d(bestMotif, S)

(4) for each /-mer Apin .S do

(5) for j=0to k do

(6) if d(A;,S) < bestScore

(7) bestMotif = A;;

(8) bestScore = d(bestMotif, S);
(9) fi

(10) Aj.1 = BestNeighbor(A;);

(11) od

(12) od

(13) output bestMotif;

If we want to do a more thorough search of D_,(Ap), we can keep a set A4 of r patterns at each iteration instead
of a single pattern and define bestNeighbor(A) to be the set of r pattern B € D_{(A4).

The algorithms can be speeded up by approximating the total distance d(B,.S) of each pattern B € D_4(A;) by
estimating d(B, S;) = min{d(B, P) | P € S;} using only patterns P € S; which satisfy two conditions:

e d(A;, P) <2k —j, which is especially satisfied for the case when P is an occurrence of the correct motif M
with at most k mutations and the path of best neighbors A; — ... — A, leads to M

e P agrees with B at the nucleotide changed from A;, which is likely to be true for the pattern P € S;
minimizing d(B, P).
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By storing the values d(A;, P) we can quickly compute the estimate of d(B, S)) for all B € D_1(A;).

Another possible speedup is to adaptively change the number of neighbors kept by limiting the total distance to
S.

PROFILEBRANCHING

The PROFILEBRANCHING algorithm is similar to the PATTERNBRANCHING algorithm, with the following chan-
ges:

1. convert each sample string Ag to a profile X(Ao)
2. generalize the scoring method to score profiles
3. modify the branching method to apply to profiles

4. use the top scoring profile as a seed to the EM algorithm

To convert a sample string to a profile we define X(Ag) as a 4 x [/ profile matrix (x,,) which in column w has
probability x,, = 0.5 for nucleotide v = a,, and x,, = 1/6 for each other nucleotide. The total distance score for
patterns is replaced by an entropy score for profiles: Given a profile X = (xy), and a pattern P = p; ... p;, let
e(X, P) be the log probability of sampling P from X, i.e. e(X,P) = Z{H log(Xxp,,w)-

Then for each S; € S let e(X, S;) = max{e(X,P) | P € S;}.

For a profile X we define D_1(X) to be the set of profiles obtained from X by amplifying a single nucleotide in a
single position w of X to create a profile X = (X,,) with relative entropy equal to p.

The relative entropy is defined as Y, x,w [0g(X,w/X,w). We use p = —0.3 (the parameter was not optimized).

For example, given the probabilities (3,3, 3,3), We obtain (0.27,0.55,0.09,0.09) by amplifying the second
nucleotide (exercise: verify this (the ratios of the non amplified nucleotides are fixed to a constant d)). At a

given position w, we only amplify a nucleotide v if x,,, < 0.5.

The resulting algorithm is quite similar to PATTERNBRANCHING. For each /-mer Ag in S, we let Xy = X(Ap) and
construct a path of profiles Xop — X; — ... = X by iteratively applying BestNeighbor for profiles, which maps
a profile X to a local improvement of its best neighbor in D_;(X). The best neighbor Y is the profile with the
highest entropy e(Y,.S).

After branching for k iterations from each /-mer Ap in the sample, we run the EM algorithm to convergence on
the top scoring profile we have found.

Performance

The PROFILEBRANCHING algorithm can be speeded up with similar ideas as the PATTERNBRANCHING al-
gorithm.
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(1) PROFILEBRANCHING(S, /, k);

(2) bestProfile = arbitrary motif profile;
(3) bestScore = e(bestProfile, S);

(4) for each /-mer Ay in S do

5)  Xo=X(Ao);

(6) forj=0to k do

(7) if e(X;,S) > bestScore
(8) bestProfile = X;;
9) bestScore = e(bestProfile, S);
(10) fi
(11) Xj.1 = BestNeighbor(X;);
(12) od
(13) od

(14) run EM algorithm on bestProfile;
(15) output resulting profile;

In summary the PROFILEBRANCHING algorithm takes about 5 times as long as the PATTERNBRANCHING
algorithm. On the motif challenge problem PATTERNBRANCHING performs almost as well as other methods
(PROJECTION, MITRA, MULTIPROFILER), but runs significantly faster (a factor of 20-100 times).

On the motif challenge problem PATTERNBRANCHING outperforms PROFILEBRANCHING, but on motifs that
are degenerate it is the other way around. For example consider a (15,5) problem in n =20 sequences of length
N = 600 with the restriction that all mutations of a position mutate to a fixed second nucleotide.

This is a hard implanted problem where pattern based approaches have an average performance coefficient of
0.1, while that of MEME is 0.63 and that of PROFILEBRANCHING is 0.99. Also for even more subtle patterns
PROFILEBRANCHING outperforms MEME.

For example, if we allow in each occurrence of the motif one of five mutations to mutate to a third nucleotide
value for that position, the average performance coefficients decline to 0.03 for PATTERNBRANCHING, 0.03 for
MEME, and only 0.62 for PROFILEBRANCHING.

The authors unfortunately do not give the exact model used in their EM algorithm.

Summary

e Motif search algorithms fall in basically two classes. The ones that consider the space of all starting
positions of the motif, and the ones that consider motif space and search for the motif given a suitable
start motif.

e The algorithms we proposed conduct a local search and end up with a proposal of the motif. This proposed
motif is then refined using Expectation Maximization (EM).

e The EM algorithm is an iterative procedure that estimates missing values by estimated values and then
uses this guess to estimate the parameters (maximize the expected value with repsect to the parameter
set). The EM algorithm converges to a local maximum.



