Discrete Math for Bioinformatics WS 10/11: , by A. Bockmayr/K. Reinert, 7. November 2011, 10:25 3001
Gene Prediction

This exposition is based on the following sources, which are all recommended reading (in this order):

1. Pavel A. Pevzner. Computational Molecular Biology, an algorithmic approach. MIT, 2000, chapter 9.

2. Chris Burge and Samuel Karlin. Prediction of complete gene structures in human genomic DNA. Journal
of Molecular Biology, 268:78-94 (1997).

3. lan Korf, Paul Flicek, Danial Duan and Michael R. Brent, Integrating Genomic Homology into Gene Struc-
ture Prediction, Bioinformatics, Vol. 1 Suppl 1., pages S1-S9 (2001).

4. Vineet Bafna and Daniel Huson. The conserved exon method for gene finding. ISMB 2000, 3-12 (2000).

5. M. S. Gelfand, A. Mironov and P. A. Pevzner, Gene recognition via spliced alignment, PNAS, 93:9061—
9066 (1996).

Introduction

In the 1960s, it was discovered that a gene and its protein product are colinear structures with a direct correlation
between the triplets of nucleotides in the gene and the amino acids in the protein.

It soon became clear that genes can be difficult to determine, due to the existence of overlapping genes, and
genes within genes etc.

Moreover, the paradox arose that the genome size of many eukaryotes does not correspond to “genetic comple-
xity”, for example, the salamander genome is 10 times the size of that of human.

In 1977, the surprising discovery of “split” genes was made: genes that consist of multiple pieces of coding DNA
called exons, separated by stretches of non-coding DNA called introns.
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The existence of split genes and junk-DNA raises a computational gene prediction problem that is still unsolved:

Given a string of DNA. The gene prediction problem is to reliably predict all genes contained in the
sequence.

Three approaches to gene finding

One can distinguish between three types of approaches:
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e Statistical or ab initio methods. These methods attempt to predict genes based on statistical properties of
the given DNA sequence. Programs are e.g. GENSCAN, GenelD, GENIE and FGENEH.

e Homology methods. The given DNA sequence is compared with known protein structures, e.g. using
“spliced alignments”. Programs are e.g. Procrustes and GeneWise.

e Comparative methods. The given DNA string is compared with a similar DNA string from a different spe-
cies at the appropriate evolutionary distance and genes are predicted in both sequences based on the
assumption that exons will be well conserved, whereas introns will not. Programs are e.g. CEM (conserved
exon method) and TWINSCAN.

Simplest approach to gene prediction

The simplest way to detect potential coding regions is to look at Open Reading Frames (ORFs). An ORF is a
sequence of codons in DNA that starts with a Start codon (ATG), ends with a Stop codon (TAA, TAG or TGA)
and has no other (in-frame) stop codons inside.

The average distance between stop codons in “random” DNA is % =~ 21, much smaller than the number of
codons in an average protein (= 300).

Essentially, long ORFs indicate genes, whereas short ORF may or may not indicate genes or short exons.

Additionally, features such as codon usage or hexamer counts can be taken into account. The codon usage of
a string of DNA is given by a 64-component vector that counts how many times each codon is present in the
string. These values can differ significantly between coding and non-coding DNA.

Eukaryotic gene structure

For our purposes, a eukaryotic gene has the following structure:
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Ab initio gene prediction methods use statistical properties of the different components of such a gene model to
predict genes in unannotated DNA. For example, for the bases around the start site we may have the following
observed frequencies (given by this position weight matrix):

Pos. -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 45 +6 +7
A .16 .29 .20 .25 .22 .66 .27 .15 1 O 0 .28 .24 .11 .26
C .48 .31 .21 .33 .56 .05 .50 .58 0 O 0 .16 .29 .24 .40
G .18 .16 .46 .21 .17 .27 .12 .22 0 O 1 .48 .20 .45 .21
T .19 .24 .14 .21 .06 .02 .11 .05 O 1 0.09 .26 .21 .21

GENSCAN's model
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We are going to discuss the popular program GENSCAN in detail, which is based on a semi-Markov model:
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First note that each node in the above model is a model itself. For example the promoter singal node is depicted
as follows:
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GENSCAN's model can be formulated as an explicit state duration HMM. This is an HMM in which, additionally,
a duration period is explicitly modeled for each state, using a probability distribution.

The model is thought of generating a parse @, consisting of:

e a sequence of states q =(q1,92,...,qn), and

e an associated sequence of durations d = (dq,d>,...,dn),

which, using probabilistic models for each of the state types, generates a DNA sequence S of length L = 31, d.

The generation of a parse of a given sequence length L proceeds as follows:

1. An initial state g; is chosen according to an initial distribution Tton the states, i.e. 5 = P(q; = Q®)), where
Q¥ (j =1,...,27) is an indexing of the states of the model.

2. A state duration or length d; is generated conditional on the value of q; = Q® from the duration distribution
fQ(i).
3. A sequence segment s; of length d; is generated, conditional on d; and g, according to an appropriate

sequence generating model for state type Q.

4. The subsequent state g, is generated, conditional on the value of q;, from the (first-order Markov) state
transition matrix T, i.e. Ti; = P(Qk+1 = Q¥ | ax = Q).
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This process is repeated until the sum z{‘:l d; of the state durations first equals or exceeds L, at which point the
last state duration is appropriately truncated, the final stretch of sequence is generated and the process stops.

The resulting sequence is simply the concatenation of the sequence segments, S =s;S;...Sy.

Note that the generated sequence is not restricted to correspond to a single gene, but could represent multiple genes, in
both strands, or none.

In addition to its topology involving the 27 states and 46 transitions depicted above, the model has four main
components:

a vector of initial probabilities TT,

a matrix of state transition probabilities T,

a set of length distributions f, and

a set of sequence generating models P.

(Recall that an HMM has initial-, transition- and emission probabilities).
Maximum likelihood prediction

Given such a model M. For a fixed sequence length L, consider

Q = ¢|_ XS,
where @ is the set of all possible parses of M of length L and | is the set of all possible sequences of length L.
The model M assigns a probability density to each point (parse/sequence pair) in €. Thus, for a given sequence
S € S, a conditional probability of a particular parse @ € ®_ is given by:

_P@®S)_ P@®S)
P(els)= PS)  Ygeo P(@.S)’

using P(M,D) = P(M | D)P(D).

The essential idea is to specify a precise probabilistic model of what a gene looks like in advance and then to
select the parse @ through the model M that has highest likelihood, given the sequence S.

Computational issues

Given a sequence S of length L, the joint probability P(@, S) of generating the parse ¢ and the sequence S is
given by:
P((p’ S) = T';hfm(dl)P(sl | ql-dl)

n
X [ Ta-s.ac o (P (i | e, ),
k=2
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where the states of @ are q1,032, ..., dn With associated state lengths dq,d>, ..., d,, which break the sequence into
segments S1, Sy, ..., Sh.

Here, P(sk | gk, dx) is the probability of generating the segment sy under the appropriate sequence generating
model for a type-qx state of length dy.

A modification of the Viterbi algorithm may be used to calculate @, the parse with maximal joint probability
(under M), that gives the predicted gene or set of genes in the sequence.

We can compute P(S) using the “forward algorithm” discussed under HMMs. With the help of the “backward

algorithm”, certain additional quantities of interest can also be computed.

For example, consider the event E[(f’)y] that a particular sequence segment [x,y] is an internal exon of phase

k € {0,1,2}. Under M, this event has probability

Z(p'E[(:)y]e(pP((p’ S)
P(S)

(k) —
I:)(E[x,y] ’ S) -

where the sum is taken over all parses that contain the given exon E[(;)y]. This sum can be computed using the
forward-backward algorithm.

Details of the model

So far, we have discussed the topology and the other main components of the GENSCAN model in general terms.
The following details need to be discussed:

the initial and transition probabilities,

the state length distributions,

transcriptional and translational signals,

splice signals, and

e reverse-strand states.

Initial and transition probabilities

For gene prediction in randomly chosen blocks of contiguous human DNA, the initial probability of each state
should be chosen proportionally to its estimated frequency in bulk human genomic DNA.

This is a non-trivial problem, because gene density and certain aspects of gene structure vary significantly in
regions of differing C+G content (so-called “isochores") of the human genome, with a much higher gene density
in C+G-rich regions.

Hence, in practice, initial and transitional probabilities are estimated for four different categories: (I) < 43% C+G,
(I1) 43 —51% C+G, (lll) 51 — 57% C+G, and (IV) > 57% C+G.
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The following initial probabilities were obtained from a training set of 380 genes by comparing the number of
bases corresponding to each of the different states:

Group I Il I v
C+G-range <43% 43—51% 51—57% >57%
Initial probabilities:

Intergenic (N) 0.892 0.867 0.540 0.418
Intron (I, 1.7) 0.095 0.103 0.338 0.388
5 UTR (F*,F7) 0.008 0.018 0.077 0.122
JUTR(T*,T) 0.005 0.011 0.045 0.072

For simplicity, the initial probabilities for the exon, promoter and poly-A states were set to 0.

Transition probabilities are obtained in a similar way.

State length distributions

In general, the states of the model correspond to sequence segments of highly variable length.

For certain states, most notably for internal exon states Ey, length is probably important for proper biological
function, i.e. proper splicing and inclusion in the final processed mRNA.

For example, it has been shown in vivo that internal deletions of exons to sizes below about 50 bp may often
lead to exon skipping, and there is evidence that steric interference between factors recognizing splice sites may
make splicing of small exons more difficult. There is also evidence that spliceosomal assembly is inhibited if
internal exons are expanded beyond 300 bp.

In summary, these arguments support the observation that internal exons are usually ~ 120 — 150 bp long, with
only a few of length less that 50 bp or more than 300 bp.

Constraints for initial and terminal exons are slightly different.

The duration in initial, internal and terminal exon states is modeled by a different empirical distribution for each
of the types of states.

In contrast to exons, the length of introns does not seem critical, although a minimum length of 70 — 80 may be
preferred.

The length distribution for introns appears to be approximately geometric (exponential). However, the average
length of introns differs substantially between the different C+G groups: In group |, the average length is 2069 bp,
whereas for group IV, the average length is only 518 bp.

Hence, the duration in intron states is modeled by a geometric distribution with parameter q estimated for each
C+G group separately.

Empirical length distributions for introns and exons:
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Note that the exon lengths generated must be consistent with the phases of adjacent introns. To account for this,
first the number of complete codons is generated from the appropriate length distribution, then the appropriate
number (0, 1 or 2) of bp is added to each end to account for the phases of the preceding and subsequent states.

For example, if the number of complete codons generated for an internal exon is C = 6, and the phase of the
previous and next intron is 1 and 2, respectively, then the total length of the exonis | =3C+2+2 =22:

phase 1 intron TT phase 2 intron

exon

For the 5 UTR and 3’ UTR states, geometric distributions are used with mean values of 769 and 457 bp,
respectively.

Simple signal models

There are a number of different models of biological signal sequences, such as donor and acceptor sites, pro-
moters, etc.

One of the earliest and must influential approaches is the weight matrix method (WMM), in which the frequen-
cy pg) of each nucleotide a at position i of a signal of length n is derived from a collection of aligned signal

sequences.
The product P(A) = [iL, Pgi) is used to estimate the probability of generating a particular sequence A=a;a; ... an.

The weight array matrix (WAM) is a generalization that takes dependencies between adjacent positions into
account. In this model, the probability of generating a particular sequence is P(A) = péll) M, p;iill‘,'ai, where p{,fm}"
is the conditional probability of generating a particular nucleotide v at position i, given nucleotide w at position

i—1.

Here is a WMM for recognition of a start site:

Pos. -8 -7 -6 -5 -4 -3 -2 -1 +1 +2 +3 +4 45 +6 +7
A .16 .29 .20 .25 .22 .66 .27 .15 1 O 0 .28 .24 .11 .26
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C .48 .31 .21 .33 .56 .05 .50 .58 0 O 0 .16 .29 .24 .40
G .18 .16 .46 .21 .17 .27 .12 .22 0 O 1 .48 .20 .45 .21
T .19 .24 .14 .21 .06 .02 .11 .05 O 1 0.09 .26 .21 .21

Under this model, the sequence . . . CCGCCACC ATG GCCC. .. has the highest probability of containing a start
site, namely: P =0.48-0.31-46-0.33:0.56-0.66-0.5-0.58-1-1-1-0.48-0.29-0.45-0.4 = 0.006.

The sequence ... AGITTTTT ATG TAAT ... has the lowest non-zero probability of containing a start site at the
indicated position, namely: P =0.16-0.16-0.14-0.21-0.06 - 0.02-0.11-0.05-1-1-1-0.09-0.24-0.11-0.21 =
20.4-107 1.

Transcriptional and translational signals

Poly-A signals are modeled as a 6 bp WMM model with consensus sequence AATAAA.
A 12 bp WMM, beginning 6 bp prior to the start codon, is used for the translation initiation signal.

In both cases, one can estimate the probabilities using the GenBank annotated “polyA_signal” and “CDS” featu-
res of sequences.

Approximately 30% of eukaryotic promoters lack a TATA signal. Hence, a TATA-containing promoter is generated
with 0.7 probability, and a TATA-less one with probability 0.3.

TATA-containing promoters are modeled as a 15 bp TATA WMM and an 8 bp cap site WMM. The length between
the two WMMs is generated uniformly from the range 14 — 20 bp.

TATA-less ones are modeled as intergenic regions of 40 bp.
Splice signals

The donor and acceptor splice signals are probably the most important signals, as the majority of exons are
internal ones. Previous approaches use WMMs or WAMs to model them, thus assuming independence of sites,
or that dependencies only occur between adjacent sites.

The consensus region of the donor splice sites covers the last 3 bp of the exon (positions -3 to -1) and the first
6 bp of the succeeding intron (positions 1 to 6):

...exon ‘ intron. ..

Position 3 -2 -1 +1 +2 +3 +4 +5 +6
Consensus cla A G G T ag A G t
WMM:

A 33 60 08 0 O .49 .71 .06 .15
C 37 183 04 0O O .03 .07 .05 .19
G 18 14 81 1 0 .45 .12 .84 .20
T A2 13 07 O 1 .03 .09 .05 .46

Donor site model
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However, donor sites show significant dependencies between non-adjacent positions, which probably reflect
details of donor splice site recognition by U1 snRNA and other factors.

Given a sequence S. Let C; denote the consensus indicator variable that is 1, if the given nucleotide at position
i matches the consensus at position i, and 0 otherwise. Let X; denote the nucleotide at position j.

For example, consider:

...exon | intron...

Position -3 -2 -1 +1 42 +3 +4 +5 +6
Consensus cla A G G T ag A G t
S ..T. A°. A C G T A A G C cC...

Here, C_; =0 and C,5 =0, and =1, for all other positions. Similarly, X_3=A, X_, = A, X_; =C etc.

We use X? statistics for the variable C; versus X;, for all pairs i,j with i 7] in the set of donor sites from the genes
of the given learning set, based on the C; versus X; contingency table:

Xi
G|l A c & T
0 | fo(A) fo(C) fo(G) fo(T)
1 [ f(A) f2(C) fa(G) fu(T),

where fi(x) is the frequency at which the training set has the consensus base at position i and the base x at
position j.

A significant X2 score indicates that there is a dependency between site i and j.

The idea is then to identify an ordering of the sites by decreasing discriminatory power and then to derive
separate WMMs for each of the different cases, thus obtaining a so-called maximal dependence decomposition:

All donor splice sites

(1254)

-
g

Pos Abh C% G% U% A% C% G% U%

-3 35 44 16
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-3 33 6
R : : : 5
-1 g 4 7% 9 Gz Hg - 2 1 97 0
3 44 3 51 3 (1057) (197) FEE 3 15 2
@ TS 4 13 9 I 28 9 2

3

1
+6 14 18 19 9 \ +6 22 20 30 2
B 34 37 18 11 Y

3 -3 29 31 21 18
2 59 10 15 16 G3G.q GsH.1 2 43 30 17 11
+3 40 4 53 3 (823) (234) +3 56 0 43 0
+4 70 4 16 10 +4 93 2 3 3
+6 17 7 21 42 ¢ +6 5 10 10 76

3 37 42 18 3 y -3 9 30 18 23
3 5 sl 5 G5G.1A2 G3G.1B 34 1 56 1
+4 62 5 22 11 (487) (336) +4 80 4 8 8
+6 18 20 25 % +6 14 21 16 49
-3 32 40 23 5 3 39 43 15 2
+3 27 4 59 10 5G.1420q)  G5GaAaVe) 45 6 46 3
+4 s1 5 25 19 a7 (310) +4 69 s 20 7

Here, H = A|C|U, B = C|G|U and V = A|C|G. For example, Gs , or Hs, is the set of donor sites with, or without, a G at
position +5, respectively.

Acceptor site model
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Intron/exon junctions are modeled by a (first-order) WAM for bases —20 to +3, capturing the pyrimidine (C,T)
rich region and the acceptor splice site itself.

It is difficult to model the branch point in the preceding intron, and only 30% of the test data had an YYRAY
sequence in the appropriate region [—40, —21].

A modified variant of a second-order WAM is employed in which nucleotides are generated conditional on the
previous two ones, in an attempt to model the weak but detectable tendency toward YYY triplets as well as

certain branch point-related triplets such as TGA, TAA, GAC, and AAC in this region, without requiring the
occurrence of any specific branch point consensus.

(A windowing and averaging process is used to obtain estimates from the limited training data.)
Exon models

Coding portions of exons are modeled using an inhomongeneous 3-periodic fifth order Markov model. Here,
separate Markov transition matrices, c;, ¢, and cg3, are determined for hexamers ending at each of the three
codon positions, respectively:

carTTITT]

XXXXXXXXXX X1 X2 X3 y1 y2 y3 z1 22 ZBKXXXXXXXX
Cc2
C3

This is based on the observation that frame-shifted hexamer counts are generally the most accurate composi-
tional discriminator of coding versus non-coding regions.

However, A+T rich genes are often not well predicted using hexamer counts based on bulk DNA and so GENS-
CAN uses two different sets of transition matrices, one trained for sequences with < 43% C+G content and one
for all others.

Performance studies

The performance of a gene prediction program is evaluated by applying it to DNA sequences for which all
contained genes are known and annotated with high confidence.

To calculate accuracy statistics, each nucleotide of a test sequence is classified as:

a predicted positive (PP) if it is predicted to be contained in a coding region,

a predicted negative (PN) if it is predicted to be contained in non-coding region,

an actual positive (AP) if it is annotated to be contained in coding region, and

an actual negative (AN) if it is annotated to be contained in non-coding region.

The performance is measured both on the level of nucleotides and on whole predicted exons, using a similar
classification.
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Based on this classification, we compute the number of:

true positives, TP = PP NAP,

false positives, FP = PP NAN,

true negatives, TN = PN N AN, and

false negatives, FN = PN NAP.

The sensitivity Sn and specificity Sp of a method are then defined as

TP TP
Sn=— and Sp=—,
AP PP

respectively, measuring both the ability to predict true genes and to avoid predicting false ones.
Performance of GENSCAN

GENSCAN was run on a test set of 570 vertebrate sequences and the forward strand exons in the optimal
GENSCAN parse of the sequence were compared to the annotated exons. The following table shows the results
and compares them with results obtained using other programs:

Table 1. Performance comparison for Burset/Guigé set of 570 vertebrate genes
A Comparison of GENSCAN with other gene prediction programs

Accuracy per nuclectide Accuracy per exon
Program Sequences  Sn Sp AC cC Sn Sp Avg. ME WE
GENSCAN 570 (8) 093 0.93 091 092 078 0.81 0.80 009 0.05
FGENEH 569 (22) 0.77 0.88 078 0.80 Q.61 0.64 0.64 0.15 0.12
GenelD) 570 (2) 063 0.81 067 065 044 046 045 028 0.24
Genie 570 () 0.76 077 072 n/a 0.55 048 051 0.17 0.33
GenLang 570 (30) 072 0.79 0.69 071 0.51 0.52 0.52 021 0.2
Genelarser2 562 (0) 0.66 0.79 067 065 035 040 037 034 017
GRAIL2 570 (23) 072 0.87 075 0.76 0.36 043 040 025 011
SORFIND 561 () 071 Q.85 073 0.72 042 047 045 024 0.14
Xpound 570 (28) 0.61 0.87 068 0.69 0.15 0.18 017 033 0.13
GenelD+ 478 (1) 0.91 091 088 0.88 073 070 071 0.07 0.13
Genelarser3 478 (1) 0.86 091 086 0.85 0.56 058 057 0.14 0.09

GENscAN performs very well here and is currently the most popular gene finding method.

Comparative gene finding

GENSCAN'’s model makes use of statistical features of the genome under consideration, obtained from an anno-
tated training set.

More recently, a number of methods have been suggested that attempt to also make use of comparative data.
They are based on the observation that

the level of sequence conservation between two species depends on the function of the DNA, e.g.
coding sequence is more conserved than intergenic sequence.

One such program is Rosetta, which first computes a global alignment of two homologous sequences and then
attempts to predict genes in both sequences simultaneously. A second is the conserved exon method, that uses
local conservation.

The TWINSCAN program is an extension of GENSCAN, that additionally models a conserved sequence.



