Measuring gene expression with DNA microarrays

02.01.2012 and 04.01.2012

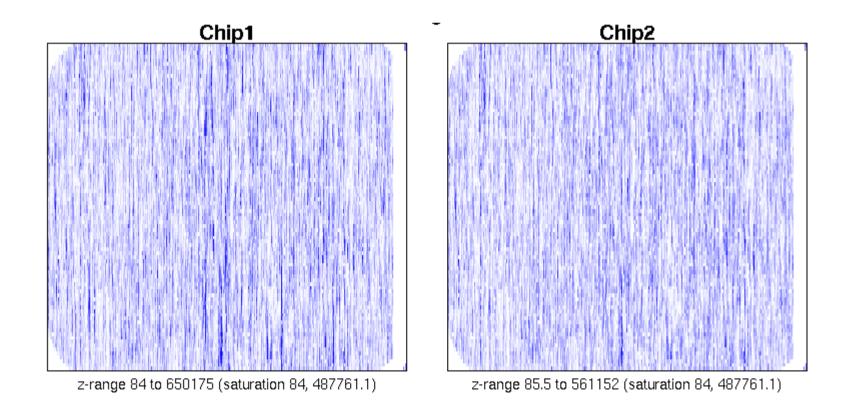
Outline

- Microarrays for the detection of gene expression
 - Technologies for microarrays
 - Normalization
 - Lowess
 - Quantile normalization
 - Variance stabilized normalization
 - Exploratory data analysis
 - Validation

Motivation

- Monitoring gene expression
 - Comparing different samples
 - Tissues
 - Strains of bacteria or yeasts
 - Time series
- Whole genome expression (tiling arrays)
- Pathogen detection
- Resequencing
- Study protein-DNA interaction

Technologies

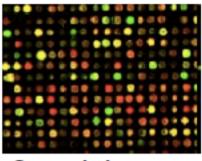


Common technologies

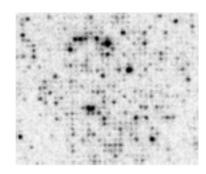
- (spotted) cDNA arrays
 - Custom made
 - Lengths up to 1000 bp
- Oligonucleotide arrays
 - Industrially manufactured
 (Affymetrix, Agilent, Nimblegen, etc)
 - 25 bp (Affy), ~60 for other technologies

- Single experiments
 - Evaluate intensities
 - Absolute transcript levels
- Two dye experiments
 - Evaluate ratio of intensities
- Different strategies for normalization and analysis

Microarrays

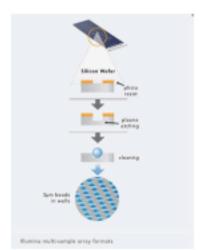


Spotted glas arrays

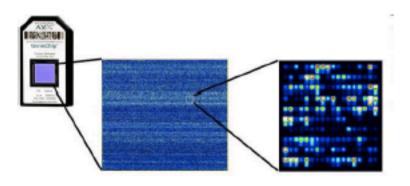


Membrane arrays

cDNA

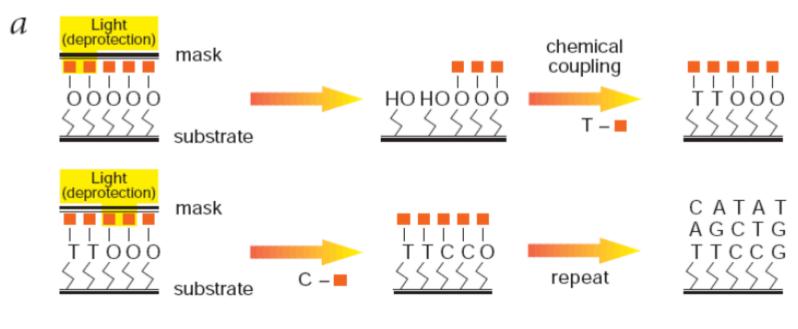


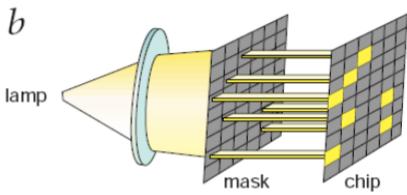
Illumina Bead Arrays



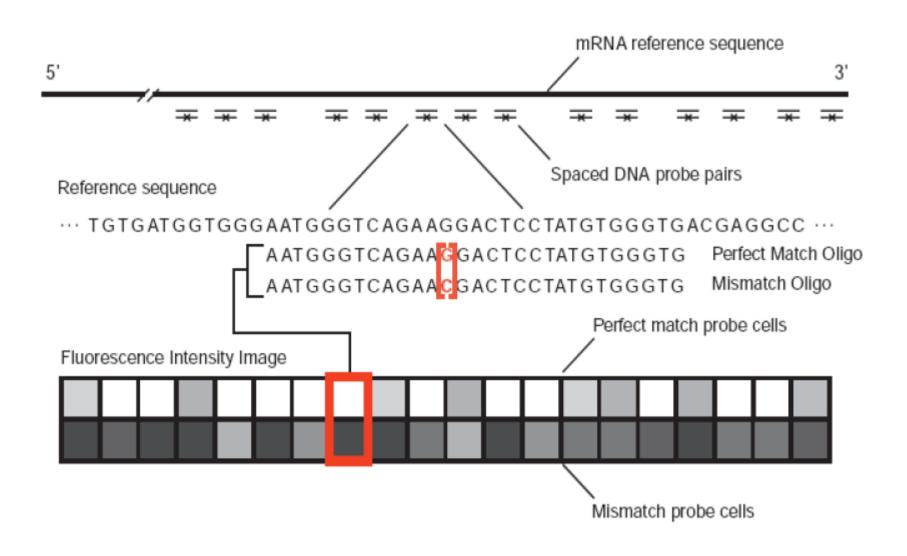
Affymetrix GeneChip

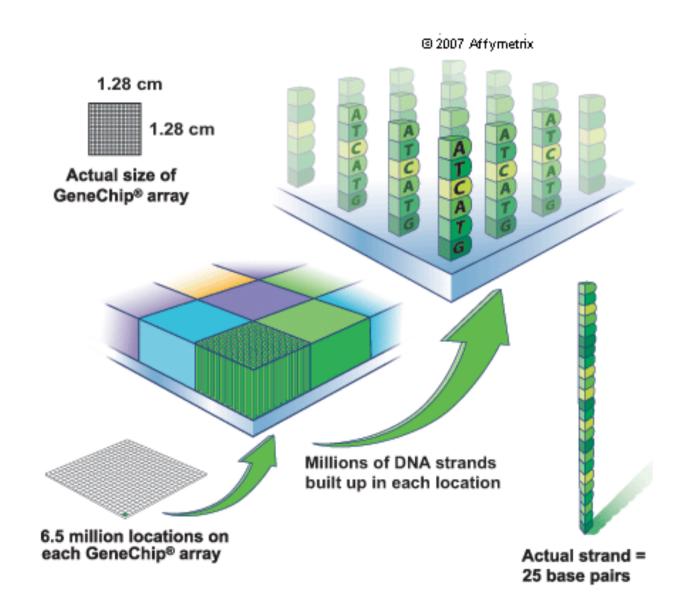
Manufacturing oligonucleotide arrays



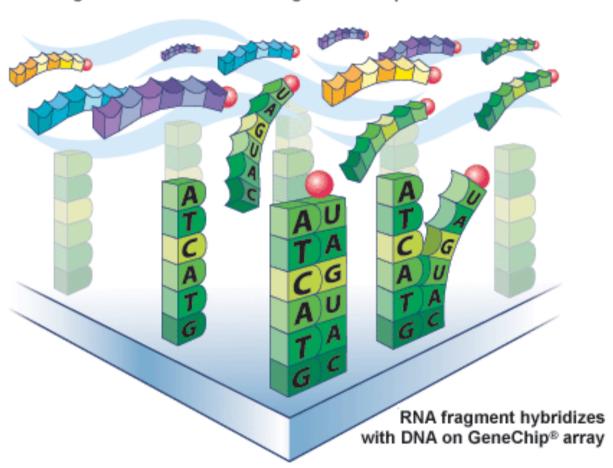


Oligonucleotide array design

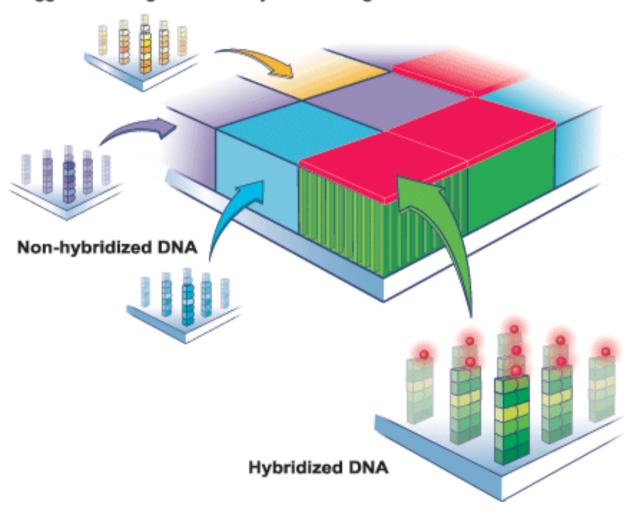




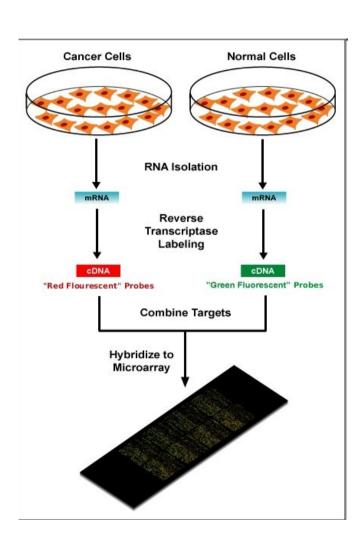
RNA fragments with fluorescent tags from sample to be tested



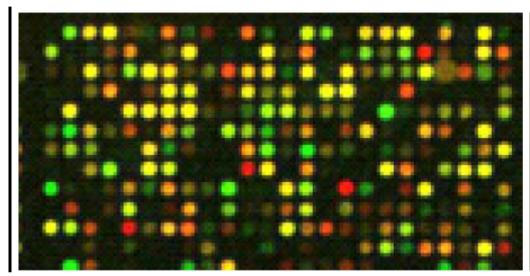
Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

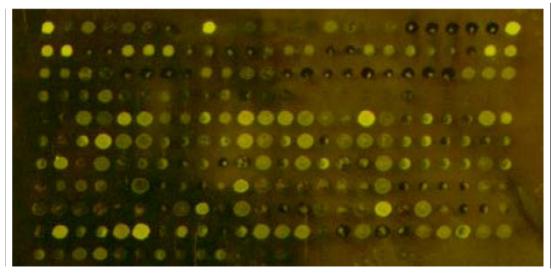


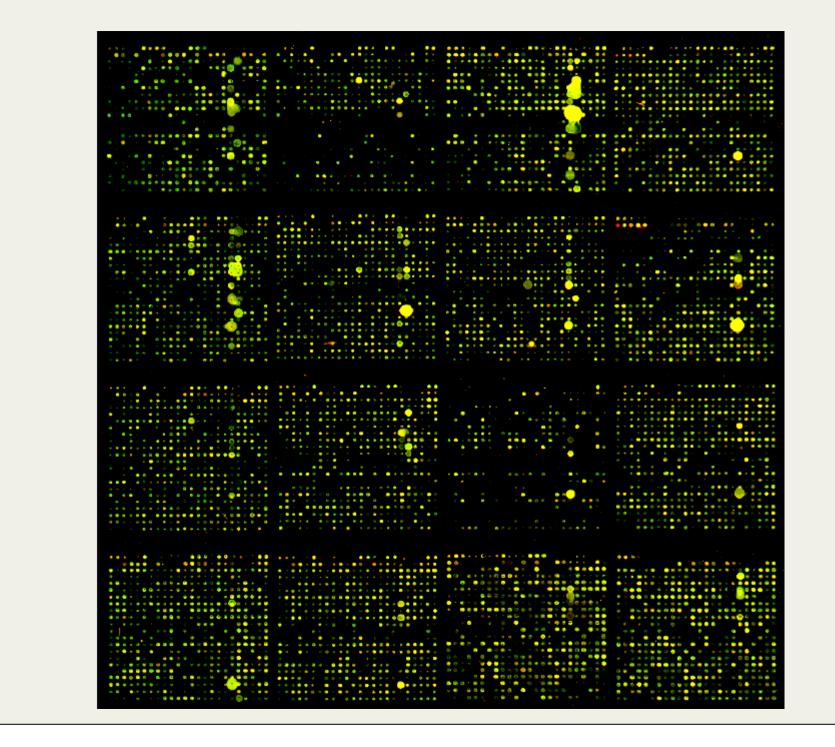
Two colour cDNA array



Red vs green overlay



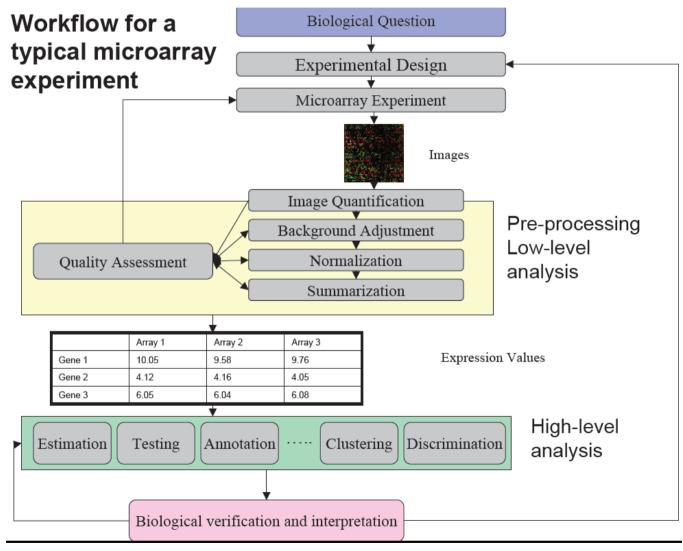




Preliminary data analysis

Plots and strategies

Typical workflow



Influences

Measuring $Y_{i,k}$ intensity of probe i on array k

- Total RNA amount
- Total sample amount
- Efficiency of
 - RNA extraction
 - Reverse transcription
 - cDNA amplification
 - cRNA transcription
 - Labeling

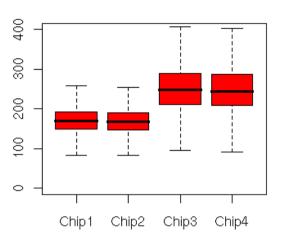
- Hybridization
 - Efficiency
 - Specificity
- Scanner settings

Analysis by inspection

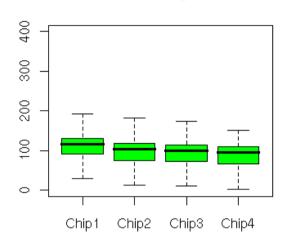
- Box plot
- Scatter plot
- QQ plot
- MvA plot
- sdm plot
- MAD plot

Box plots

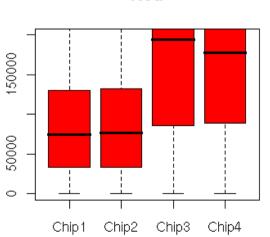
Red background



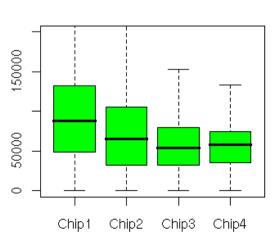
Green Background



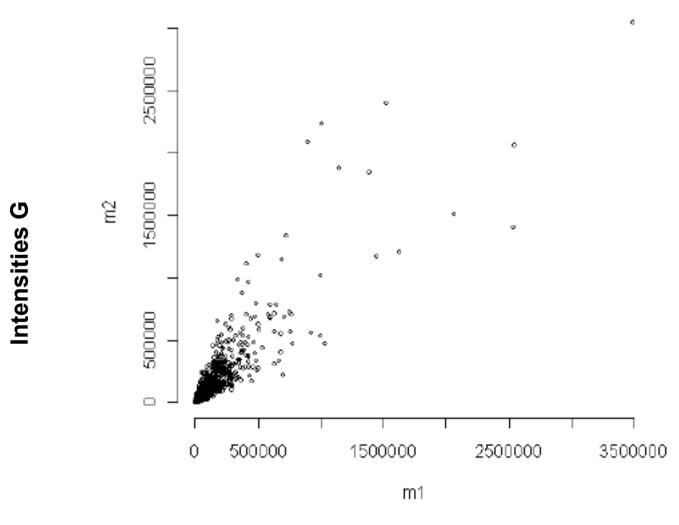
Red



Green

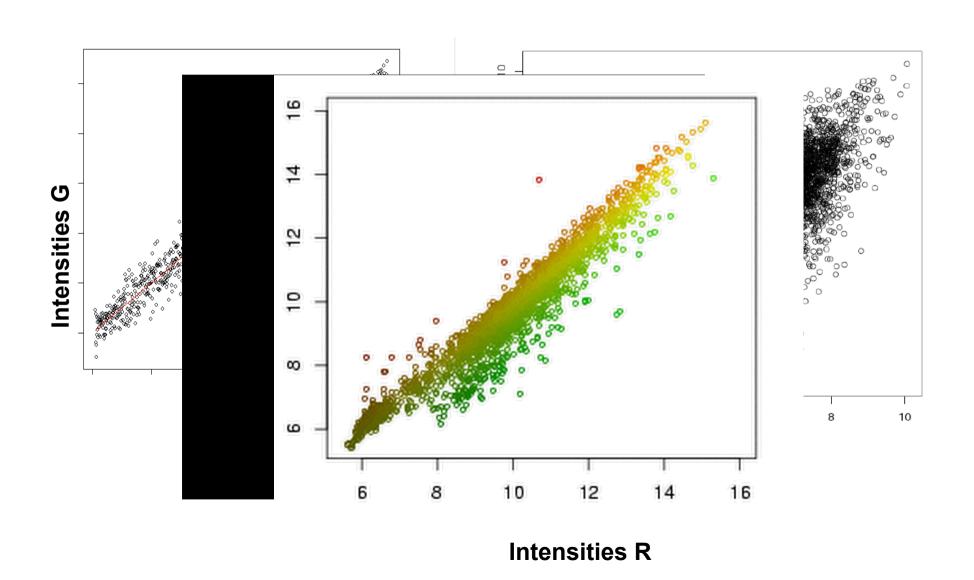


Scatter plot

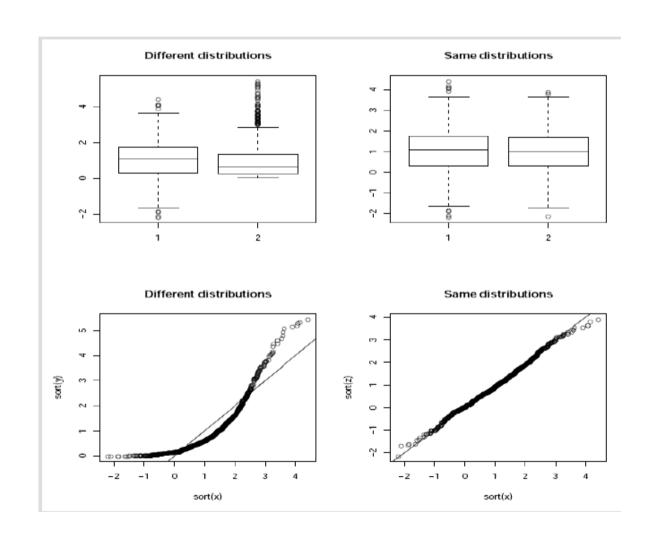


Intensities R

Scatter plot



QQ-plot



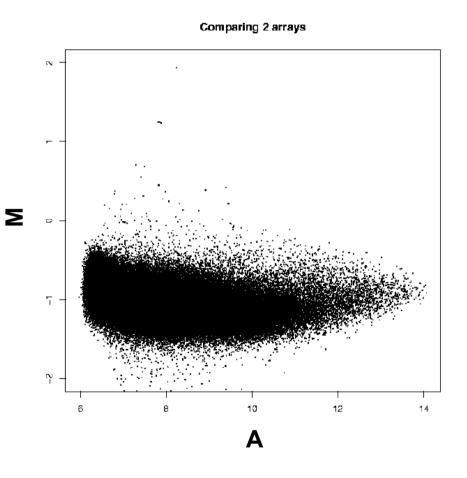
MvA plot

 Comparison of two arrays (Affymetrix) or two samples (e.g. Cy3 and Cy5 labeled)

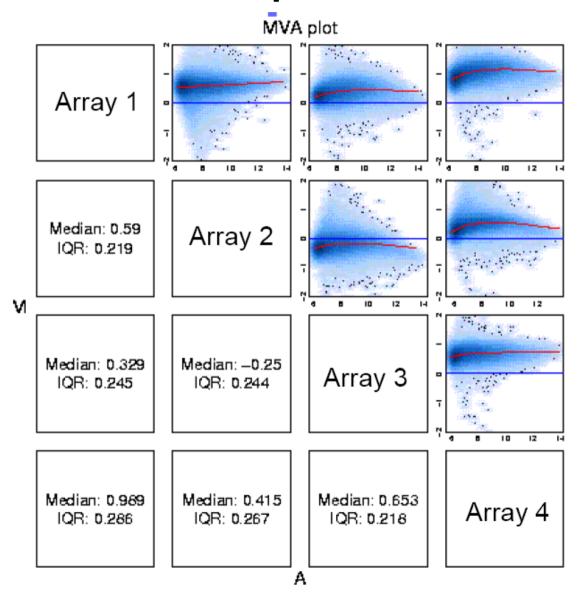
X axis: A – average intensity

$$A = 0.5*(log R + log G)$$

Y axis: M – log ratio
 M = log R – log G

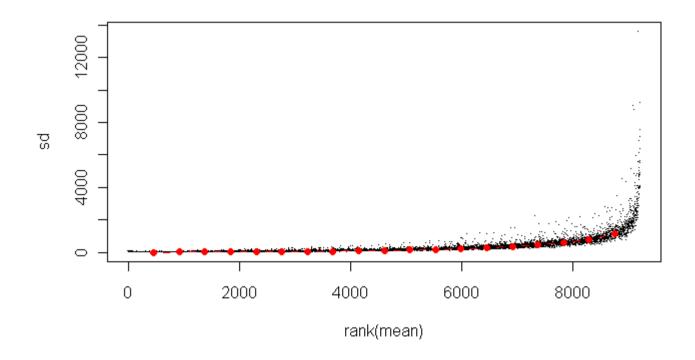


MvA plots



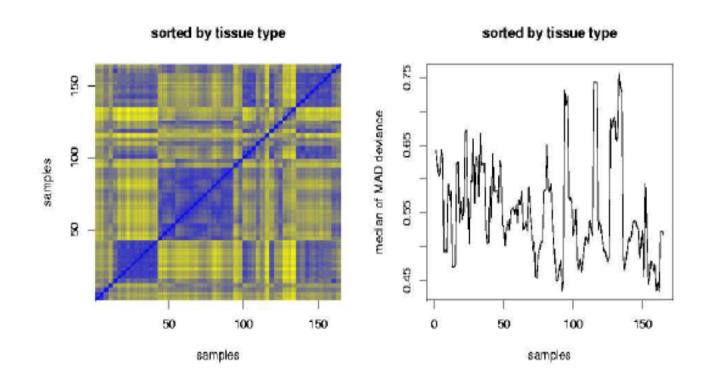
SDM plots

Standard deviation vs. mean

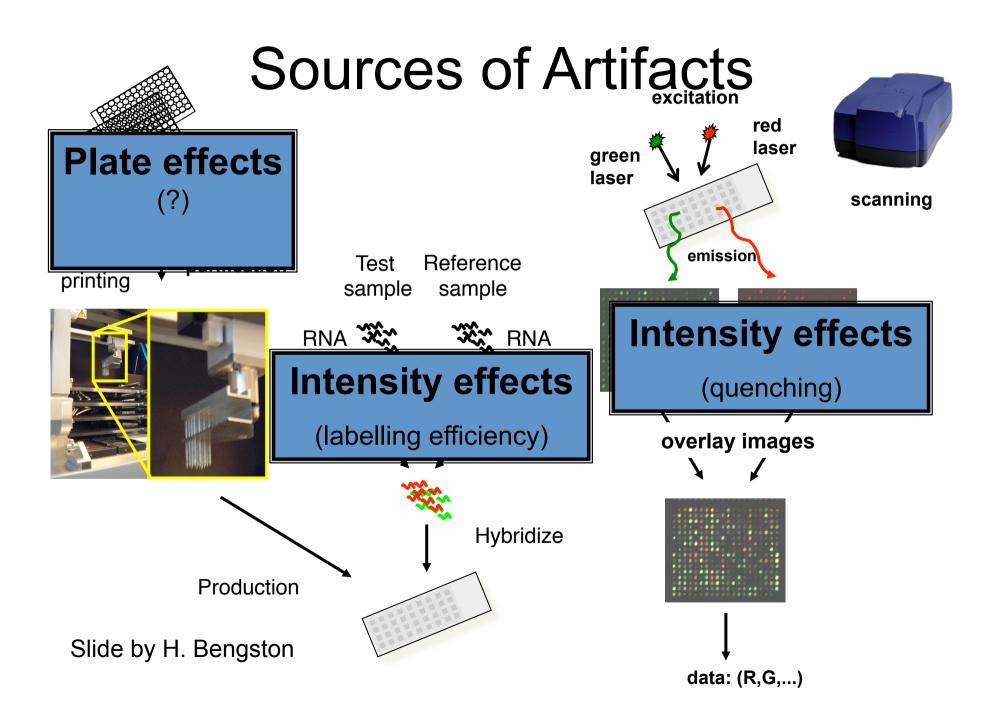


Median absolute deviation

- Comparison between arrays
- $MAD_{i,j} = median_j\{|x_{i1} x_{j1}|, |x_{i2} x_{j2}|, ...)\}$

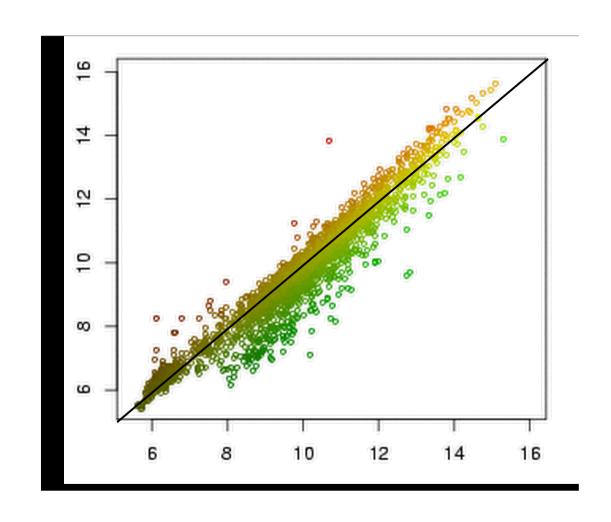


Normalization

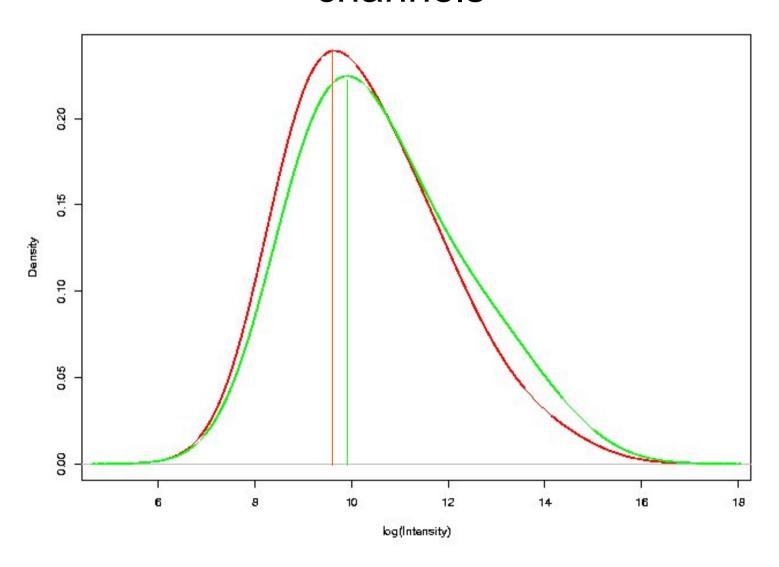


Hybridization of the same sample to 2 chips/ channels

- Random and systematic measurement errors
- Biases result in scatter plots not centered around the x-y diagonal



Hybridization of the same sample to 2 chips/channels



Normalization - two problems

- I. How to detect biases? Which genes to use for estimating biases among chips/channels?
- II. How to remove the biases?

Which genes to use for bias detection?

All genes on the chip

 Assumption: Most of the genes are equally expressed in the compared samples, the proportion of the differential genes is low (<20%).

– Limits:

- Not appropriate when comparing highly heterogeneous samples (different tissues)
- Not appropriate for analysis of 'dedicated chips' (apoptosis chips, inflammation chips etc)

House keeping genes

- Based on prior knowledge a set of genes can be regarded as equally expressed in the compared samples
- Affy novel chips: 'normalization set' of 100 genes
- NHGRI's cDNA microarrays: 70 "housekeeping" genes set
- Limits:
 - The validity of the assumption is questionable
 - Housekeeping genes are usually expressed at high levels, not informative for the low intensities range

Bias detection

- Spiked-in controls from other organism, over a range of concentrations
 - Limits:
 - low number of controls-less robust
 - Can't detect biases due to differences in RNA extraction protocols
- "Invariant set"
 - Trying to identify genes that are expressed at similar levels in the compared samples without relying on any prior knowledge:
 - Rank the genes in each chip according to their expression level
 - Find genes with small change in ranks

Normalization Methods

Influence parameters

Commonly used approaches

- Global intensity scaling
- LOESS
- Quantil normalization
- Variance stabilized normalization (vsn)

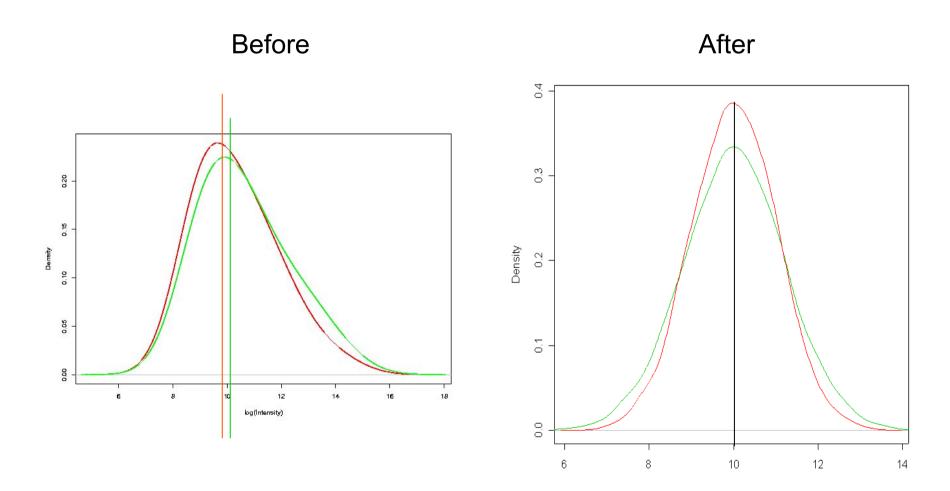
Global normalization (Scaling)

 A single normalization factor (k) is computed for balancing chips\channels:

$$X_i^{norm} = k^*X_i$$

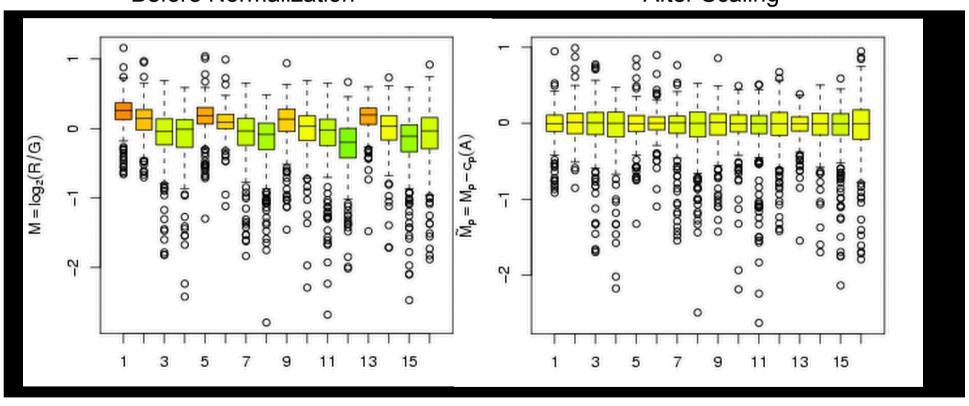
- Multiplying intensities by this factor equalizes the mean (median) intensity among compared chips
- Found in many papers, not recommended

Global Normalization



Before Normalization

After Scaling

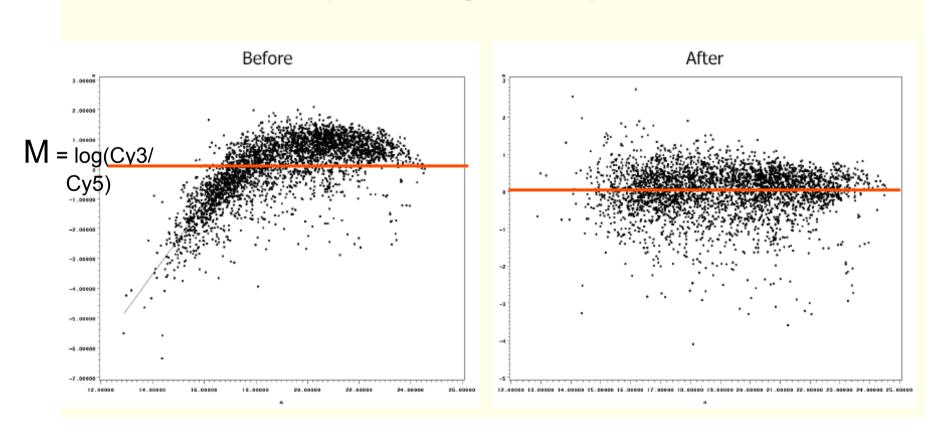


LOESS

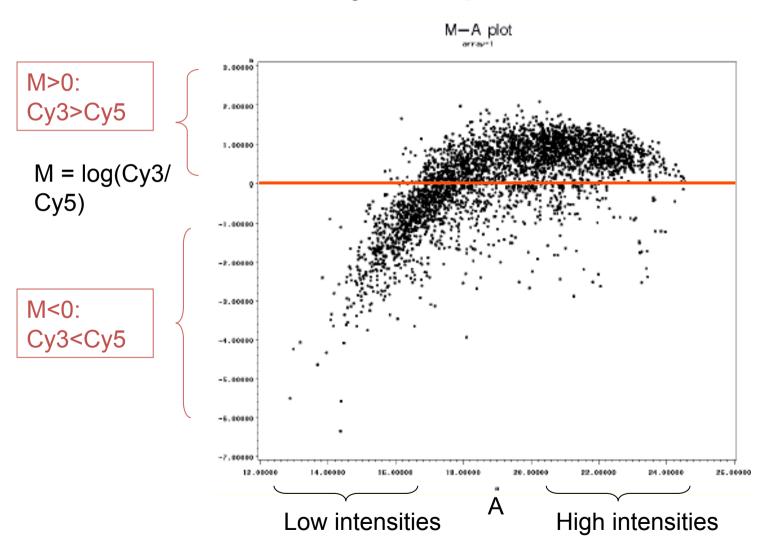
- Locally weighted scatter plot smoothing
- Synonymous with *lowess*
- Compensate for intensity-dependent biases
- Separate the data into windows of a given size
- Apply a regression function to the segmented data

We expect the M vs A plot to look like:

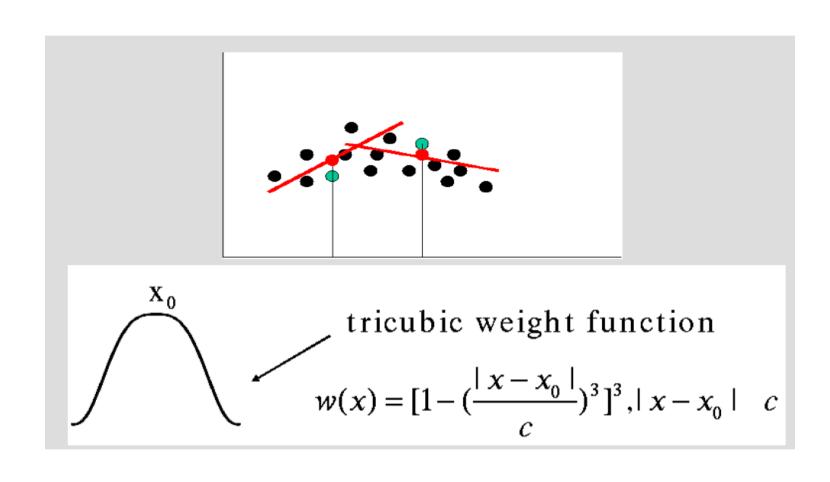
→ LOESS (Local Regression)



Intensity-dependent bias



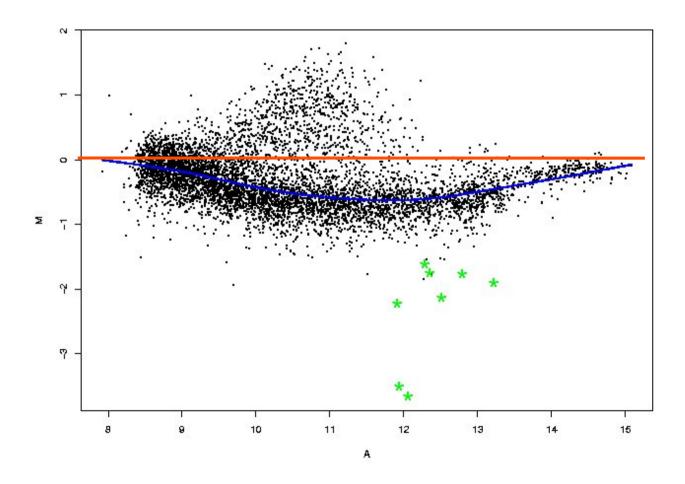
Separate data



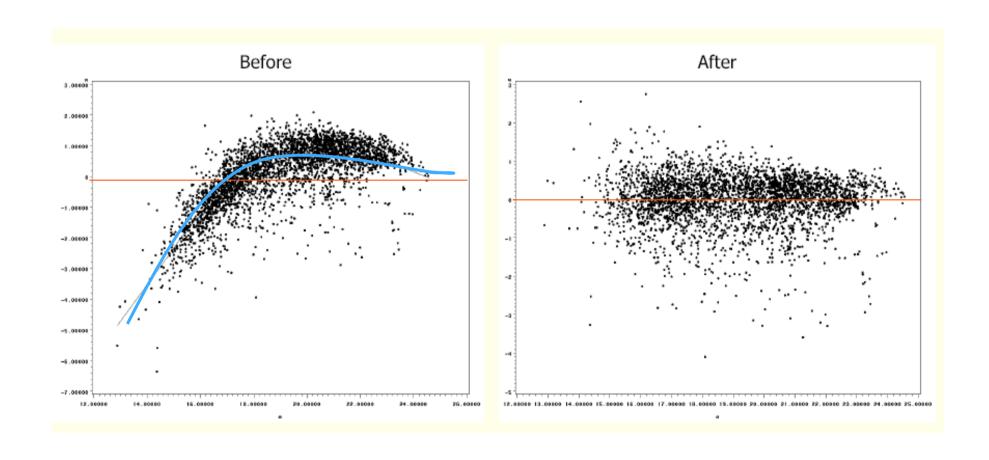
Intensity-Dependent Normalization

Assumption: Most of the genes are equally expressed at all intensities

Lowess – fitting local regression curve – c(A)

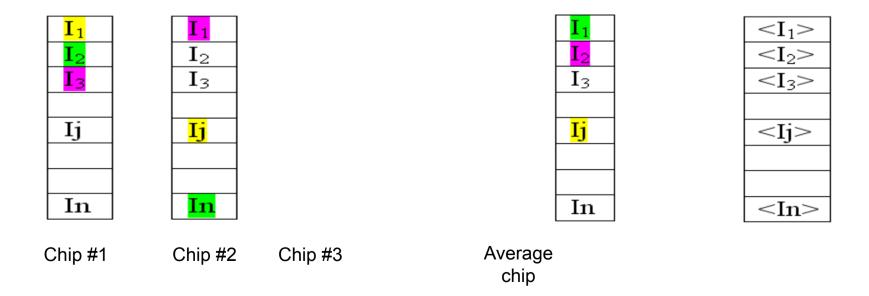


LOWESS normalization

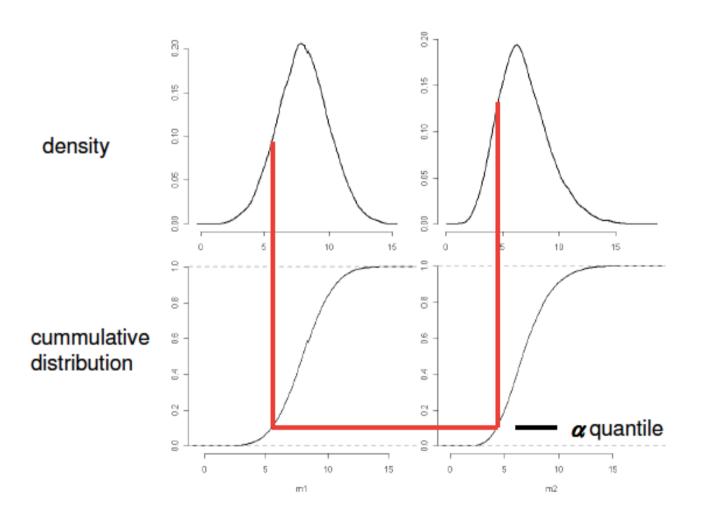


Quantile Normalization

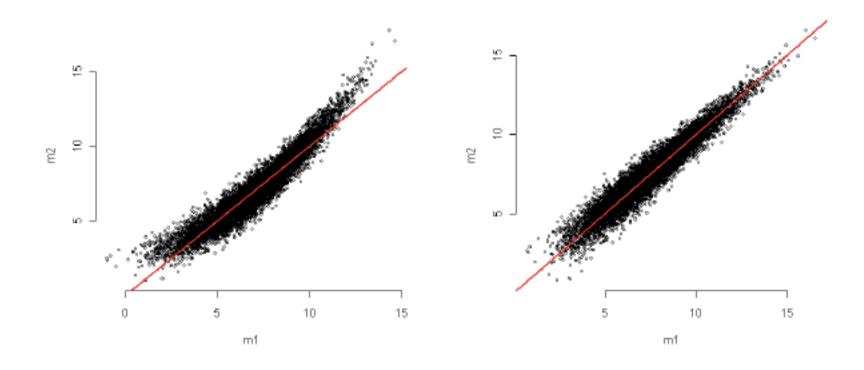
- Sort intensities in each chip
- Compute mean intensity in each rank across the chips
- Replace each intensity by the mean intensity at its rank



Quantile normalization

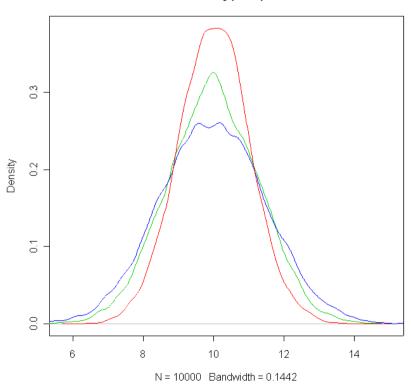


Quantile normalization

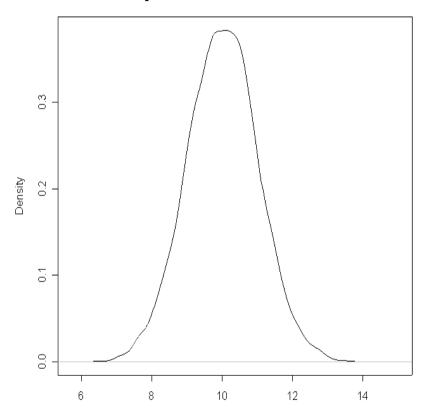


Comparison

After lowess normalization



After quantile normalization



Variance stabilized normalization

Measured intensity = offset + gain x true abundance

$$Y_{ik} = \alpha_{ik} + \beta_{ik} x_k$$

$$\alpha_{ik} = \alpha_i + e_{ik}$$

a_i: per sample offset

 e_{ik} : additive noise ~ N (0,b_is₁²)

$$\beta_{ik} = \beta_i \beta_k \exp(n_{ik})$$

 β_i : per sample normalization factor

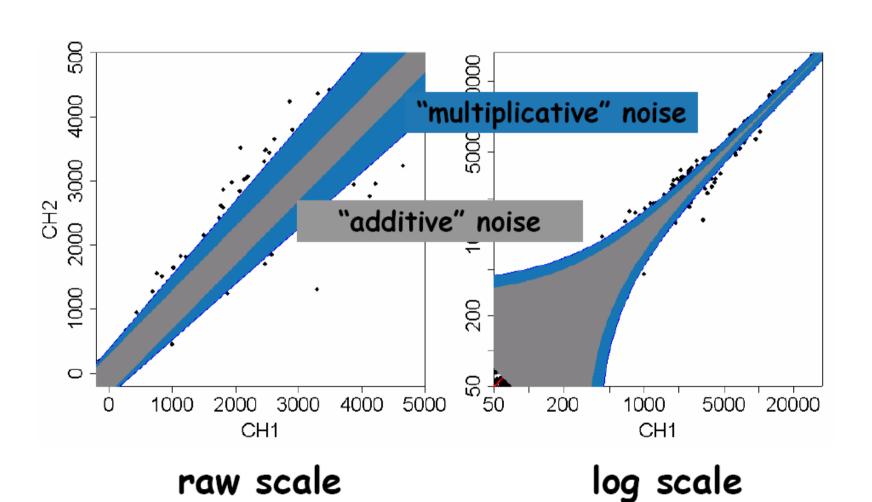
 β_k : sequence-wise labeling efficiency

 $n_{ik} \sim N(0, s_2^2)$: multiplicative noise

Variance stabilizing normalization

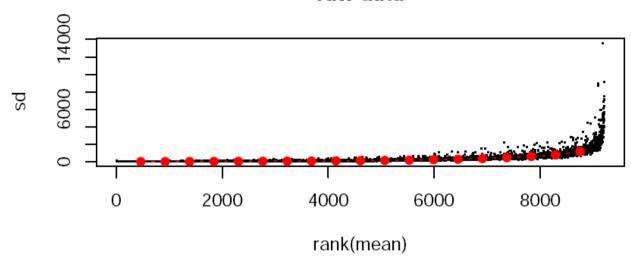
- Powerful method incorporating
 - Background substraction
 - Error model
 - Analysis of significantly expressed genes
- Typically employed in the analysis of ratios
 - Many genes are lowly expressed

Additive vs. multiplicative noise

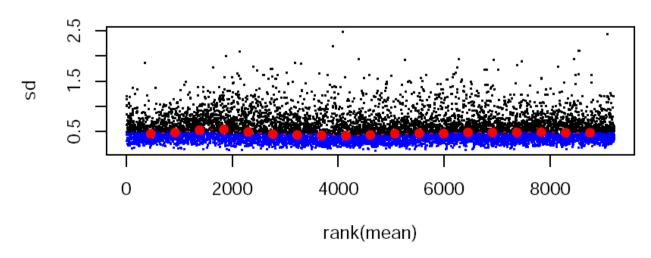


From Huber

raw data



vsn processed data



Variance stabilizing transformation

 X_u a family of random variables with $EX_u=u$, $VarX_u=v(u)$. Define

$$f(x) = \int_{-\sqrt{v(u)}}^{x} du$$

 \Rightarrow var $f(X_u) \approx$ independent of u

derivation: linear approximation

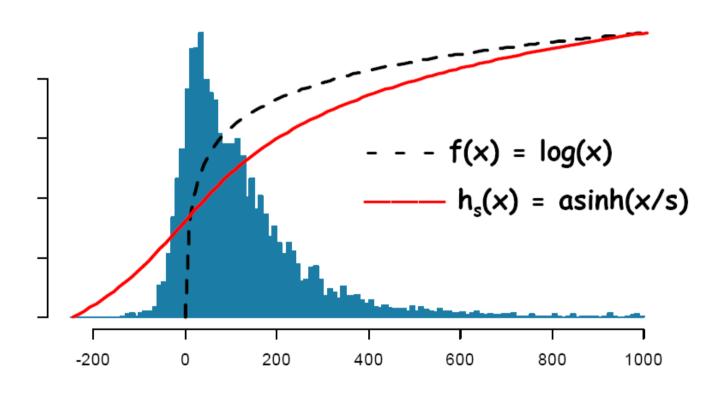
vsn transformation

$$f(x) = \int_{-\sqrt{v(u)}}^{x} du$$

- 1.) constant variance ('additive') $v(u) = s^2 \implies f \propto u$
- 2.) constant CV ('multiplicative') $v(u) \propto u^2 \Rightarrow f \propto \log u$
- 3.) offset $v(u) \propto (u + u_0)^2 \Rightarrow f \propto \log(u + u_0)$
- 4.) additive and multiplicative

$$v(u) \propto (u + u_0)^2 + s^2 \Rightarrow f \propto \operatorname{arsinh} \frac{u + u_0}{s}$$

arsinh and log



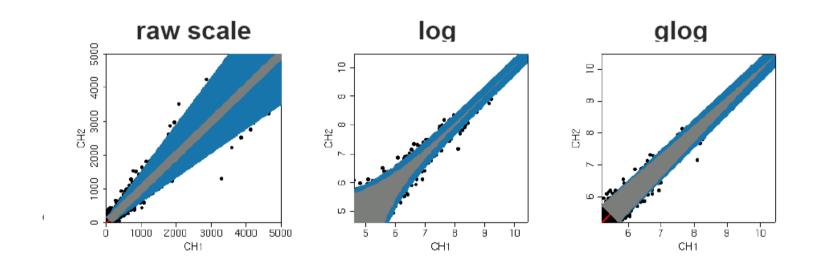
$$\operatorname{arsinh}(x) = \log\left(x + \sqrt{x^2 + 1}\right)$$
$$\lim_{x \to \infty} \left(\operatorname{arsinh} x - \log x - \log 2\right) = 0$$

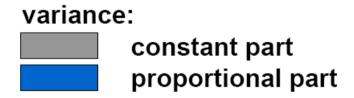
P. Munson, 2001

D. Rocke & B. Durbin, ISMB 2002

W. Huber et al., ISMB 2002

Generalized logarithm





Exploratory data analysis

Fold change
ANOVA
Median polish

Validation

Sensitivity, Specificity ROC curves

Receiver operating characteristic

- A framework to compare the performance of binary classifiers
- Plot of false positive rate (sensitivity) vs true positive rate (1-specificity)
- TPR = TP/P
- FPR = FP/N

