Measuring gene expression with DNA microarrays

02.01.2012 and 04.01.2012

Outline

- Microarrays for the detection of gene expression
 - Technologies for microarrays
 - Normalization
 - Lowess
 - Quantile normalization
 - Variance stabilized normalization
 - Exploratory data analysis
 - Validation

Motivation

- Monitoring gene expression
 - Comparing different samples
 - Tissues
 - Strains of bacteria or yeasts
 - Time series
- Whole genome expression (tiling arrays)
- Pathogen detection
- Resequencing
- Study protein-DNA interaction

Technologies

Common technologies

- (spotted) cDNA arrays
 - Custom made
 - Lengths up to 1000 bp
- Oligonucleotide arrays
 - Industrially manufactured
 (Affymetrix, Agilent, Nimblegen, etc)
 - 25 bp (Affy), ~60 for other technologies

- Single experiments
 - Evaluate intensities
 - Absolute transcript levels
- Two dye experiments
 - Evaluate ratio of intensities
- Different strategies for normalization and analysis

Microarrays

Spotted glas arrays

Membrane arrays

cDNA

Illumina Bead Arrays

Affymetrix GeneChip

Manufacturing oligonucleotide arrays

Oligonucleotide array design

RNA fragments with fluorescent tags from sample to be tested

Shining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

Two colour cDNA array

Red vs green overlay

Preliminary data analysis

Plots and strategies

Typical workflow

Influences

Measuring $Y_{i,k}$ intensity of probe i on array k

- Total RNA amount
- Total sample amount
- Efficiency of
 - RNA extraction
 - Reverse transcription
 - cDNA amplification
 - cRNA transcription
 - Labeling

- Hybridization
 - Efficiency
 - Specificity
- Scanner settings

Analysis by inspection

- Box plot
- Scatter plot
- QQ plot
- MvA plot
- sdm plot
- MAD plot

Box plots

Red background

Green Background

Red

Green

Scatter plot

Intensities R

Scatter plot

QQ-plot

MvA plot

 Comparison of two arrays (Affymetrix) or two samples (e.g. Cy3 and Cy5 labeled)

X axis: A – average intensity

$$A = 0.5*(log R + log G)$$

Y axis: M – log ratio
 M = log R – log G

MvA plots

SDM plots

Standard deviation vs. mean

Median absolute deviation

- Comparison between arrays
- $MAD_{i,j} = median_j\{|x_{i1} x_{j1}|, |x_{i2} x_{j2}|, ...)\}$

Normalization

Hybridization of the same sample to 2 chips/ channels

- Random and systematic measurement errors
- Biases result in scatter plots not centered around the x-y diagonal

Hybridization of the same sample to 2 chips/channels

Normalization - two problems

- I. How to detect biases? Which genes to use for estimating biases among chips/channels?
- II. How to remove the biases?

Which genes to use for bias detection?

All genes on the chip

 Assumption: Most of the genes are equally expressed in the compared samples, the proportion of the differential genes is low (<20%).

– Limits:

- Not appropriate when comparing highly heterogeneous samples (different tissues)
- Not appropriate for analysis of 'dedicated chips' (apoptosis chips, inflammation chips etc)

House keeping genes

- Based on prior knowledge a set of genes can be regarded as equally expressed in the compared samples
- Affy novel chips: 'normalization set' of 100 genes
- NHGRI's cDNA microarrays: 70 "housekeeping" genes set
- Limits:
 - The validity of the assumption is questionable
 - Housekeeping genes are usually expressed at high levels, not informative for the low intensities range

Bias detection

- Spiked-in controls from other organism, over a range of concentrations
 - Limits:
 - low number of controls-less robust
 - Can't detect biases due to differences in RNA extraction protocols
- "Invariant set"
 - Trying to identify genes that are expressed at similar levels in the compared samples without relying on any prior knowledge:
 - Rank the genes in each chip according to their expression level
 - Find genes with small change in ranks

Normalization Methods

Influence parameters

Commonly used approaches

- Global intensity scaling
- LOESS
- Quantil normalization
- Variance stabilized normalization (vsn)

Global normalization (Scaling)

 A single normalization factor (k) is computed for balancing chips\channels:

$$X_i^{norm} = k^*X_i$$

- Multiplying intensities by this factor equalizes the mean (median) intensity among compared chips
- Found in many papers, not recommended

Global Normalization

Before Normalization

After Scaling

LOESS

- Locally weighted scatter plot smoothing
- Synonymous with *lowess*
- Compensate for intensity-dependent biases
- Separate the data into windows of a given size
- Apply a regression function to the segmented data

We expect the M vs A plot to look like:

→ LOESS (Local Regression)

Intensity-dependent bias

Separate data

Intensity-Dependent Normalization

Assumption: Most of the genes are equally expressed at all intensities

Lowess – fitting local regression curve – c(A)

LOWESS normalization

Quantile Normalization

- Sort intensities in each chip
- Compute mean intensity in each rank across the chips
- Replace each intensity by the mean intensity at its rank

Quantile normalization

Quantile normalization

Comparison

After lowess normalization

After quantile normalization

Variance stabilized normalization

Measured intensity = offset + gain x true abundance

$$Y_{ik} = \alpha_{ik} + \beta_{ik} x_k$$

$$\alpha_{ik} = \alpha_i + e_{ik}$$

a_i: per sample offset

 e_{ik} : additive noise ~ N (0,b_is₁²)

$$\beta_{ik} = \beta_i \beta_k \exp(n_{ik})$$

 β_i : per sample normalization factor

 β_k : sequence-wise labeling efficiency

 $n_{ik} \sim N(0, s_2^2)$: multiplicative noise

Variance stabilizing normalization

- Powerful method incorporating
 - Background substraction
 - Error model
 - Analysis of significantly expressed genes
- Typically employed in the analysis of ratios
 - Many genes are lowly expressed

Additive vs. multiplicative noise

From Huber

raw data

vsn processed data

Variance stabilizing transformation

 X_u a family of random variables with $EX_u=u$, $VarX_u=v(u)$. Define

$$f(x) = \int_{-\sqrt{v(u)}}^{x} du$$

 \Rightarrow var $f(X_u) \approx$ independent of u

derivation: linear approximation

vsn transformation

$$f(x) = \int_{-\sqrt{v(u)}}^{x} du$$

- 1.) constant variance ('additive') $v(u) = s^2 \implies f \propto u$
- 2.) constant CV ('multiplicative') $v(u) \propto u^2 \Rightarrow f \propto \log u$
- 3.) offset $v(u) \propto (u + u_0)^2 \Rightarrow f \propto \log(u + u_0)$
- 4.) additive and multiplicative

$$v(u) \propto (u + u_0)^2 + s^2 \Rightarrow f \propto \operatorname{arsinh} \frac{u + u_0}{s}$$

arsinh and log

$$\operatorname{arsinh}(x) = \log\left(x + \sqrt{x^2 + 1}\right)$$
$$\lim_{x \to \infty} \left(\operatorname{arsinh} x - \log x - \log 2\right) = 0$$

P. Munson, 2001

D. Rocke & B. Durbin, ISMB 2002

W. Huber et al., ISMB 2002

Generalized logarithm

Exploratory data analysis

Fold change
ANOVA
Median polish

Validation

Sensitivity, Specificity ROC curves

Receiver operating characteristic

- A framework to compare the performance of binary classifiers
- Plot of false positive rate (sensitivity) vs true positive rate (1-specificity)
- TPR = TP/P
- FPR = FP/N

