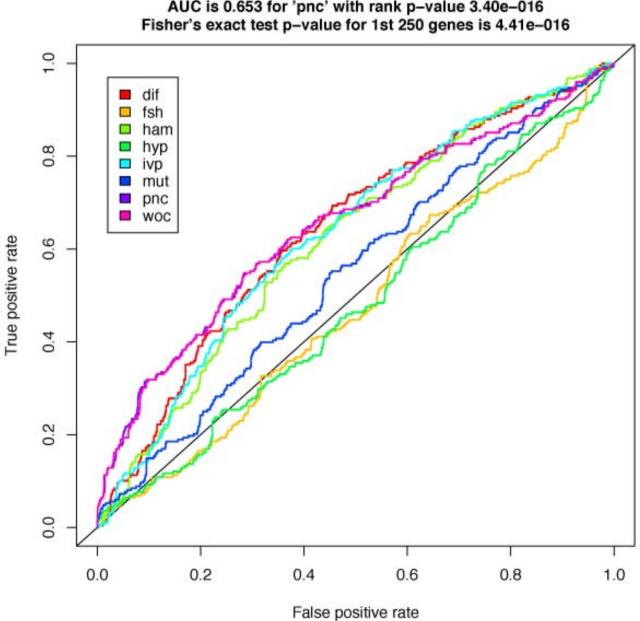

Gene expression 3

ROC curves Multiple testing Gene expression networks

Hierarchical clustering results

Chi et al., PNAS | **September 16, 2003** | vol. 100 | no. 19 | **10623-10628**


"Endothelial cell diversity revealed by global expression profiling"

Receiver operating characteristic

- A framework to compare the performance of binary classifiers
- Plot of false positive rate (sensitivity) vs true positive rate (1-specificity)

Gütemaße

- Sensitivität/Recall TPR = TP/P = TP/(TP+FN)
- Spezifizität FPR = FP/N = FP/(FP+TN)
- Precision (positive predictive value) PPV= TP/(TP+FP)
- False discovery rate FDR=FP/(TP+FP)

ROC curves with data set 'falMP' AUC is 0.653 for 'pnc' with rank p-value 3.40e-016 Fisher's exact test p-value for 1st 250 genes is 4.41e-016

Hypothesis Testing

- H0 : Null hypotheis vs. H1 : Alternative Hypothesis
- T : test statistics C : critical value
- If |T|>C, H0 is rejected. Otherwise H0 is retained
- Example H0 : μ 1 = μ 2 vs. H1 : μ 1 \neq μ 2 T = (x1- x2) / pooled standard error (se)
- If $|T| > z(1 \alpha/2)$, H0 is rejected at the significance level α
- Cα

Hypothesis Testing

		Hypothesis Result	
		Retained	Rejected
Truth	H0		Type I error
	H1	Type II error	

- Type I error rate = false positives (α : significance level)
- Type II error rate = false negatives
- Power : 1–Type II error rate
- P-values : $p=inf\{\alpha \mid H0 \text{ is rejected at the significance level } \alpha \}$

Issues in Multiple Comparison

- Given n treatments, which two treatments are significantly different ? (simultaneous testing)
- Is treatment A different from treatment B?
- m treatment means : μ_1, \dots, μ_n H_j : $\mu_i = \mu_j$ where $i \neq j$ T_j = (x_i- x_j) / pooled SE
- Type I error when testing each at 0.05 significance level one by one : $1 (0.95)^n$
- Inflated Type I error, ex) $\alpha = 1 (0.95)^{10} = 0.401263$
- Remedies : Bonferroni Method

Type I error rate = α / # of comparison

Type I Error Rates

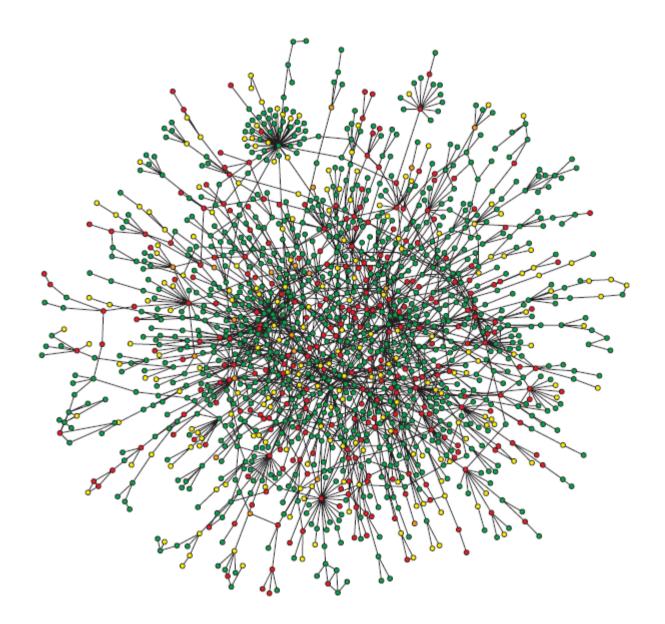
Hypothesis Result

	#retained	#rejected	Total
HO	U	V	m0
H1	Т	S	m1
Total	m-R	R	m
	H1	H0 U H1 T	H0 U V H1 T S

- Per-comparison error rate (PCER) = E(V) / m
- Per-family error rate (PFER) = E(V)
- Family-wise error rate = pr ($V \ge 1$)
- False discovery rate (FDR) = E(Q), Q V/R, if R > 0 0, if R = 0

Type I Error Rates

Under the complete null hypothesis, each ${\rm H_{j}}$ has Type I error rate $\alpha_{\rm j}.$


- PCER = E(V) / m = $(\alpha_1 + ... + \alpha_m)/m$
- PFER = E(V) = α_1 +...+ α_m
- FWER= pr (V ≥ 1) = 1 Pr (H_j, j=1, ..., m, not rejected)
- FDR = E(V / R) = FWER

$$PCER = (\alpha_1 + ... + \alpha_m)/m \le max (\alpha_1 + ... + \alpha_m) \le PWER = FDR \le PFER = \alpha_1 + ... + \alpha_n$$

 α_1 +...+ α_m

Types of comparisons

- Assume Hj , j=1, ..., m, with their test statistics Tj , j=1,..., m, which has a MN with mean μ=(μ1,...,μm) and identity covariance vector
- Let Rj = I (Hj is rejected) and rj is observed value of Rj
- Let $\gamma j = Pr$ (Hj rejected under Hj).
- PFER = $\sum j=1m \gamma j$ (Per family error rate)
- PCER = $\sum j=1m \gamma j / m$ (Per comparison error rate)
- FWER = 1- $\prod j=1m (1 \gamma j)$ (Family wise error rate)
- FDR = ∑r1=01...∑r1=01(∑j=1m0rj / ∑j=1mrj)∏ γjrj (1- γj) 1-rj (False discovery rate)

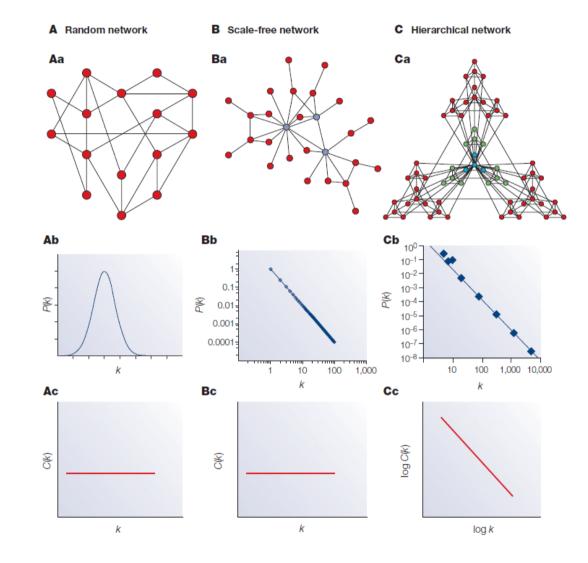
Networks

Considerations for the analysis

- Directed vs undirected graphs
- Analysis of confounding factors
- How to assign weights?
 - Repetitions in screen
 - Outgoing and incoming edges
 - External data
- Hubs

 $\rightarrow b$

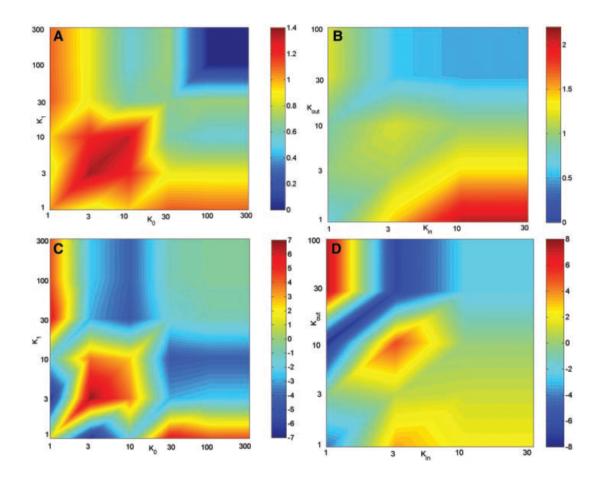
Topological analysis

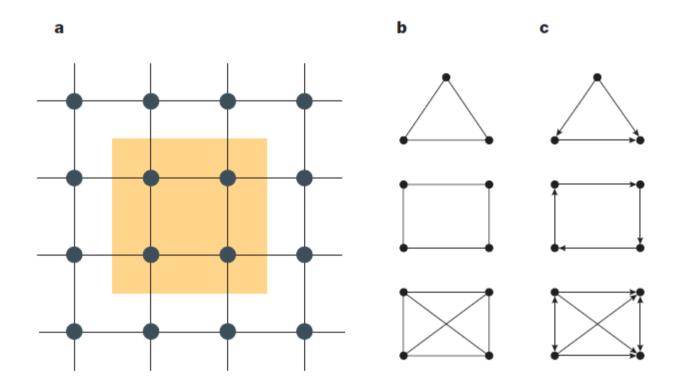

- Small worlds
 - Shortest path lengths are small
 - Degrees of separation
- Degree distribution – Random model $P(\deg(v) = k) = {\binom{n-1}{k}}p^k(1-p)^{n-1-k},$
 - Poisson with max = P (<k>)
 - Scale free
 - P(k) ~ k^{-r}
 - -1.5 > r > 3

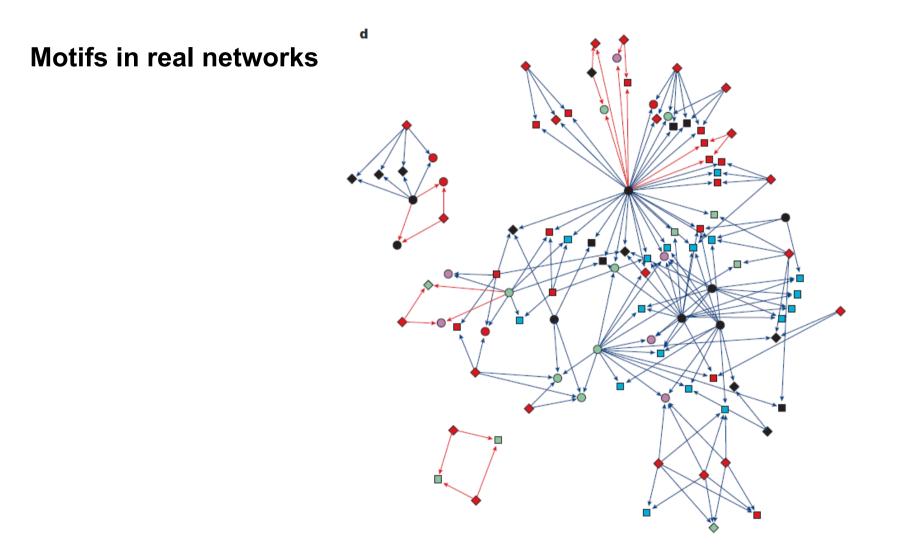
• Modular

- Clustering co-efficient
$$C_i = \frac{2E_i}{k_i(k_i - 1)}$$

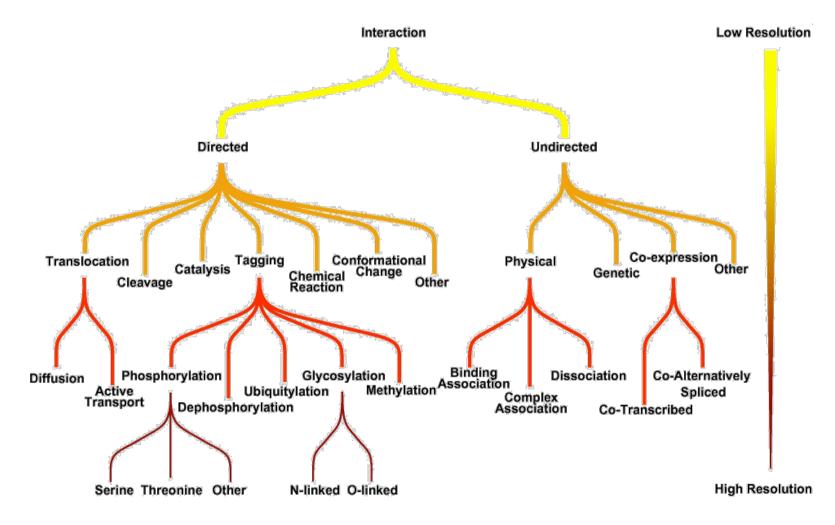
Different networks


From Barabási (2004), Nature Reviews Genetics


Connections between hubs


Maslov and Sneppen (2002) Science

Hubs are connected to proteins of low degree, not between each other



Motifs and subgraphs

Biological types of interactions

A proposed ontology for interactions (Lu et al.)

- Unweighted graphs
 Hamming distance
- Weighted graphs
 - Euclidean distance
 - Correlation
 - Pearson
 - Spearman
- Boolean networks
- Probabilistic networks
 - Markov Random Fields
 - Bayesian networks