
8 Automata and formal languages

This exposition was developed by Clemens Gröpl and Knut Reinert. It is based on the following references, all
of which are recommended reading:

1. Uwe Schöning: Theoretische Informatik - kurz gefasst. 3. Auflage. Spektrum Akademischer Verlag,
Heidelberg, 1999. ISBN 3-8274-0250-6

2. http://www.expasy.org/prosite/prosuser.html — PROSITE user manual

3. Sigrist C.J., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., Bucher P.. PROSITE: a
documented database using patterns and profiles as motif descriptors. Brief Bioinform. 3:265-274(2002).

We will present basic facts about:

• formal languages,

• regular and contex-free grammars,

• deterministic finite automata,

• nondeterministic finite automata,

• pushdown automata.

8.1 Formal languages

An alphabet Σ is a nonempty set of symbols (also called letters). In the following, Σ will always denote a finite
alphabet.

A word over an alphabet Σ is a sequence of elements of Σ. This includes the empty word, which contains no
letters and is denoted by ε.

For any alphabet Σ, the set Σ∗ is defined to be the set of all words over the alphabet Σ. The set Σ+ := Σ∗ \ {ε}
contains all nonempty words Σ.

E. g., if Σ = {a, b}, then
Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}

and
Σ+ = {a, b, aa, ab, ba, bb, aaa, aab, . . .}.

The length of a word x is denoted by |x|.

For words x, y ∈ Σ∗ we denote their concatenation by xy: If x = x1, . . . xm and y = y1, . . . , yn (where xi, y j ∈ Σ)
then xy = x1, . . . , xm, y1, . . . , yn.

For x ∈ Σ∗ let xn := xx . . . x︸ ︷︷ ︸
n

. (That is, n concatenated copies of x).

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8001

Thus |xn
| = n|x|,

∣∣∣xy
∣∣∣ = |x| +

∣∣∣y∣∣∣, and |ε| = 0.

A (formal) language A over an alphabet Σ is simply a set of words over Σ, i. e., a subset of Σ∗. The empty
language ∅ := {} contains no words.

(Note: The empty language ∅ must not to be confused with the language {ε}, which contains only the
empty word.)

The complement of a language A (over an alphabet Σ) is the language Ā := Σ∗ \ A.

For languages A,B we define their product as

AB := {xy | x ∈ A, y ∈ B} ,

using the concatenation operation defined above.

E. g., if A = {a, ha}, B = {ε, t, ttu} then

AB = {a, ha, at, hat, attu, hattu} .

The powers of a language L are defined by

L0 := {ε}

Ln := Ln−1L , for n ≥ 1.

The “Kleene star” (or Kleene hull) of a language L is

L∗ :=
∞⋃

i=0

Ln .

Funnily, ∅n = ∅ for n ≥ 1, but ∅∗ = ∅0 = {ε}, according to these definitions. But (defined this way) language
exponentiation works as expected: For every language A and m,n ≥ 0, we have AmAn = Am+n.

Most formal languages are infinite objects. In order to deal with them algorithmically, we need finite
descriptions for them. There are two approaches to this:

• Grammars describe rules how to produce words from a given language. We can classify languages according
to the kinds of rules which are allowed.

• Automata describe how to test whether a word belongs to a given language. We can classify languages
according to the computational power of the automata which are allowed.

Fortunately, the two approaches can be shown to be equivalent in many cases.

8.2 Grammars

Definition.
A grammar is a 4-tuple G = (V,Σ,P,S) satisfying the following conditions.

• V is a finite set of variable symbols. For brevity, the variable symbols are often simply called variables, or
nonterminals.

8002 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

• Σ is a finite set of terminal symbols, also called the terminal alphabet. This is the alphabet of the language
we want to describe. We require that variable symbols and terminal symbols can be distinguished, i. e.,
V ∩ Σ = ∅.

• P is a finite set of rules or productions. A rule has the form

(left hand side) → (right hand side) ,

where lhs ∈ (V ∪ Σ)+ and rhs ∈ (V ∪ Σ)∗.

• S ∈ V is the start variable.

We can think of the productions of a grammar as ways to “transform” words over the alphabet V ∪ Σ into
other words over V ∪ Σ.

Definition.
We can derive v from u in G in one step if there is

• a production y→ y′ in P and

• x, z ∈ (V ∪ Σ)∗ such that

• u = xyz and v = xy′z.

This is denoted by u⇒G v. If the grammar is clear from the context, we write just u⇒ v.

Definition.
The reflexive and transitive closure⇒∗G of⇒G is defined as follows. We have u⇒∗G v if and only if u = v or v can
be derived from u in a series u⇒ w1 ⇒ w2 ⇒ . . .⇒ wn ⇒ v of steps using the grammar G. Then

L(G) := {w ∈ Σ∗ | S⇒∗G w}

is the language generated by G.

Note: The crucial point is that we wrote w ∈ Σ∗, not w ∈ (V ∪ Σ)∗. Variables are not allowed in generated
words which are “output”.

(Note 2: This raises another question: Productions can lengthen and shorten the words. How can we tell
how long it will take until we have removed all variable symbols? Well, that’s another story.)

Example 1.
The following grammar generates all words over Σ = {a, b}with equally many a’s and b’s.

G = ({S},Σ,P,S), where

P := {
S→ ε,

S→ Sab
ab→ ba,
ba→ ab
}

(Can you prove this?)

Example 2.
The following grammar generates well-formed arithmetic expressions over the alphabet Σ = {(,), a, b, c,+, ∗}.

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8003

G = ({A,M,K},Σ,P,A), where

P := {
A→M,
A→ A + M
M→ K,
M→M ∗ K,
K→ a,
K→ b,
K→ c,
K→ (A),
}

Chomsky described four sorts of restrictions on a grammar’s rewriting rules. The resulting four classes of
grammars form a hierarchy known as the Chomsky hierachy. In what follows we use capital letters A,B,W,S, . . .
to denote nonterminal symbols, small letters a, b, c, . . . to denote terminal symbols and greek letters α, β, γ, . . .
to represent a string of terminal and non-terminal letters.

1. Regular grammars. Only production rules of the form W → aW or W → a are allowed.

2. Context-free grammars. Any production of the form W → α is allowed.

3. Context-sensitive grammars. Productions of the form α1Wα2 → α1βα2 are allowed.

4. Unrestricted grammars. Any production rule of the form α1Wα2 → γ is allowed.

8.3 Regular grammars

For Bioinformatics we will be interested in the regular and context-free grammars. Hence a more detailed
definition:

Definition.
A grammar is called regular if all productions have the form `→ r, where ` ∈ V and r ∈ Σ ∪ ΣV.

That is, we can only replace a variable with:

• a terminal (r ∈ Σ), or

• a terminal followed by a variable (r ∈ ΣV).

Example.
The following regular grammar generates valid identifier names in many programming languages.

G = ({[alpha], [alnum]}, {A, . . .Z, a, . . . , z, , 0, 1, . . . , 9},P, [alpha]}, where

P := {
[alpha]→ A, . . . , ,
[alpha]→ A[alnum], . . . , [alnum],
[alnum]→ A, . . . , , 0, . . . , 9,
[alnum]→ A[alnum], . . . , [alnum], 0[alnum], . . . , 9[alnum]
}

Here we used commas to write several productions sharing the same left hand side in one line.

8004 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

8.4 Context-free grammars

Here the definition of a context-free grammar:

Definition 1. A context free grammar G is a 4-tuple G = (V,Σ,P,S) with V and Σ being alphabets with V ∩Σ = ∅.

• V is the nonterminal alphabet.

• Σ is the terminal alphabet.

• S ∈ N is the start symbol.

• P ⊆ V × (V ∪ Σ)∗ is the finite set of all productions.

Consider the context-free grammar

G =
(
{S}, {a, b}, {S→ aSa | bSb | aa | bb}, S

)
.

This CFG produces the language of all palindromes of the form ααR.

For example the string aabaabaa can be generated using the following derivation:

S⇒ aSa⇒ aaSaa⇒ aabSbaa⇒ aabaabaa.

The “palindrome grammar” can be readily extended to handle RNA hairpin loops. For example, we could
model hairpin loops with three base pairs and a gcaa or gaaa loop using the following productions.

S→ aW1u | cW1g | gW1c | uW1a,
W1 → aW2u | cW2g | gW2c | uW2a,
W2 → aW3u | cW3g | gW3c | uW3a,
W3 → gaaa | gcaa.

(We don’t mention the alphabets V and Σ explicitly if they are clear from the context.)

Grammars generate languages. They are a means to quickly specify all (possibly an infinite number) words
in a language.

Now we will turn the attention to the automata that can decide whether a word is in the language or not.
If the word is in the language the automaton accepts the word. We start with finite automata and proove that
they are able to accept exactly the words generated by a regular grammar.

8.5 Deterministic finite automata

Definition.
A deterministic finite automaton (DFA) is a 5-tuple M = (Z,Σ, δ, z0,E) satisfying the following conditions.

• Z is a finite set of states the automaton can be in.

• Σ is the alphabet. The automaton “moves” along the input from left to right. In each step, it reads a single
character from the input.

• δ : Z × Σ→ Z is the transition function. When the character has been read, M changes its state depending
on the character and its current state. Then it proceeds to the next input position.

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8005

• z0 is the initial state of M before the first character is read.

• E is the set of end states or accepting states. If M is in a state contained in E after the last letter has been
read, the input is accepted.

DFAs can be drawn as digraphs very intuitively.

• States correspond to vertices. They are drawn as single circles; accepting states are indicated by double
circles.

• Edges correspond to transitions and are labeled with letters from Σ. There is an arc from u to v labeled a if
and only if there is a transition δ(u, a) = v. The initial state is marked by an ingoing arrow.

Example.
The following automaton accepts the language

L = {x ∈ {a, b}∗ | (#a(x) − #b(x)) % 3 = 1} .

(where % denotes modulus, i. e. remainder of division)

z1 z2z0
a

b

a

b

a

b

Using the definition of DFA, we have M = ({z0, z1, z2}, {a, b}, δ, z0, {z1}), where

δ(z0, a) = z1 δ(z1, a) = z2 δ(z2, a) = z0

δ(z0, b) = z2 δ(z1, b) = z0 δ(z2, b) = z1

Definition.
A language L is called regular if there is a regular grammar that produces L \ {ε}.

Lengthy remark: The issue with ε is really just a technical complication. We can always modify a grammar G that
generates a language L into a grammar G′ that generates the language L ∪ {ε} by the following trick: Let S be the start
variable of G. Let S′ be a new variable symbol not used by G. Then G′ is obtained by replacing the start variable by S′ and
adding the following productions: S′ → S | ε.

Whether the resulting grammar G′ is also called regular (if G was regular) depends on the literature. Schöning uses the
following “ε-Sonderregelung”: If ε ∈ L(G) is desired, then the production S→ ε is admitted, where S is the start variable.
However, in this case S must not appear on the right hand side of a production.

8.6 From DFAs to regular grammars

Again, let M = (Z,Σ, δ, z0,E) be a deterministic finite automaton.

It is useful to extend the transition function δ : Z × Σ→ Z to a mapping δ∗ : Z × Σ∗ → Z, called the extended
transition function. We define δ∗(z, ε) := z for every state z ∈ Z and inductively,

δ∗(z, xa) := δ(δ∗(z, x), a) for x ∈ Σ∗, a ∈ Σ .

8006 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

Observe that if x = x[1 .. n] is an input string, then δ∗(z0, x[1.. 0]), δ∗(z0, x[1 .. 1]), . . . , δ∗(z0, x[1 .. n]) is the
path of states followed by the DFA. Hence, the language accepted by M is

L(M) := {x ∈ Σ∗ | δ∗(z0, x) ∈ E} .

We are now ready to prove:

Theorem 2. Every language which is accepted by a deterministic finite automaton is regular.

Proof: Let M = (Z,Σ, δ, z0,E) be a DFA and A := L(M). We will construct a regular grammar G = (V,Σ,P,S) that
generates A.

We let V := Z and S := z0.

Every arc δ(u, a) = v becomes a production u → av ∈ P, and if v ∈ E we also include a production u → a.
That is,

P := {u→ av | δ(u, a) = v} ∪ {u→ a | δ(u, a) = v ∈ E} .

Now we have

x[1 .. n] ∈ L(M)

⇔ there are states z1, . . . , zn ∈ Z such that
δ(zi−1, x[i]) = zi for i = 1, . . . ,n,
where z0 is the start state and zn ∈ E is an accepting state

⇔ there are variables z1, . . . , zn ∈ V such that
zi−1 → x[i]zi is a production in P,
where z0 is the start variable,
and zn−1 → x[n] is also a production in P

⇔ we can derive
S = z0 ⇒ x[1]z1 ⇒ x[1]x[2]z2 ⇒ . . . ⇒ x[1 .. n−1]zn−1 ⇒ x[1 .. n]
in G, i. e., S⇒∗G x

⇔ x[1 .. n] ∈ L(G).

If ε ∈ A, i. e., z0 ∈ E, then we need to apply the “ε-Sonderregelung” and modify G accordingly. �

8.7 Nondeterministic finite automata

In DFAs, the path followed upon a given input was completely determined. Next we will introduce nonde-
terministic finite automata (NFAs). These are defined similar to DFAs, but each state can have more than one
successor state for any given letter, or none at all.

Definition.
A nondeterministic finite automaton (NFA) is a 5-tuple M = (Z,Σ, δ,U0,E) satisfying the following conditions.

• Z is a finite set of states.

• Σ is the alphabet.

• δ : Z × Σ→ P(Z) is the transition function. Here P(Z) is the power set of Z, i. e. the set of all subsets of Z.

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8007

• U0 is the set of initial states.

• E is the set of accepting states.

When the automaton reads a ∈ Σ and is in state z, it is free to choose one of several sucessor states in δ(z, a),
or its gets stuck if δ(z, a) = ∅.

Definition.
A nondeterministic finite automaton accepts and input if there is at least one accepting path.

Again, we can define an extended transition function δ∗ : P(Z) × Σ∗ → P(Z). We let δ∗(U, ε) := U for all subsets
of states U ⊆ Z and inductively,

δ∗(U, xa) :=
⋃

v∈δ∗(U,x)

δ(v, a) for x ∈ Σ∗, a ∈ Σ .

Then the language accepted by M is

L(M) := {x ∈ Σ∗ | δ∗(U0, x) ∩ E , ∅} .

The following illustrates the definition of δ∗. The large bubble on the left side is δ∗(U, x), the large bubble
on the right side is δ∗(U, xa), where a is some letter. The state space (fat dots) is shown twice for clarity. Time
goes from left to right. The smaller cones indicate δ(v, a) for each v ∈ δ∗(U, x).

NFAs can be drawn as digraphs, similar to DFAs. The resulting digraphs are more general:

• We can have several arrows pointing to start states.

• The number of arcs with a given label leaving a vertex is no longer required to be exactly 1, it can be any
number (including 0).

Example.
The following NFA accepts all words over the alphabet Σ = {a, b}which do not start or end with the letter b.

8008 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

z1 z2

a

a b

a
z0

z3

a

8.8 DFAs and NFAs are equivalent

Although NFAs are a generalization of DFAs, they accept the same languages:

Theorem 3 (Rabin, Scott). For every nondeterministic finite automaton M there is a deterministic finite automaton M′

such that L(M) = L(M′).

Proof. Let M = (Z,Σ, δ,U0,E) be an NFA. The basic idea of the proof is to view the subsets of states of Z as
single states of an DFA M′ whose state space is P(Z). Then the rest of the definition of M′ is straightforward.

The “power set automaton” is defined as M′ := (P(Z),Σ, δ′,U0,E′), where

• P(Z) is the state space

• The transition function δ′ : P(Z) × Σ→ P(Z) is defined by

δ′(U, a) :=
⋃
v∈U

δ(v, a) = δ∗(U, a) for U ∈ P(Z) .

• U0 ∈ P(Z) is the new start state (note that in M it was the set of start states).

• E′ := {U ⊆ Z | U ∩ E , ∅} is the new set of end states.

Using the definitions of M and M′, we have:

x[1 .. n] ∈ L(M)

⇔ there are accepting paths in M,
δ∗(U0, x[1 .. n]) ∩ E , ∅

⇔ there are subsets U1,U2, . . . ,Un ⊆ Z such that

δ′(Ui−1, x[i]) = Ui and Un ∩ E , ∅

⇔ there is an accepting path in M′,
δ′∗(U0, x[1 .. n]) = Un ∈ E′

⇔ x[1 .. n] ∈ L(M′). �

Remarks:

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8009

1. In the power set construction, we can safely leave out states which cannot be reached from the start state U0.
That is, we can generate the reached state sets “on the fly”.

2. The exponential blow up of the number of states (from |Z| to 2|Z|) cannot be avoided in general. For example,
the language

L := {x ∈ {a, b}∗ | |x| ≥ k and the k-last letter of x is an a }
has an NFA with k + 1 states, but it is not hard to show that no DFA for L can have less that 2k states.

8.9 From regular grammars to NFAs

We have just seen how to transform a nondeterministic finite automaton into a deterministic finite automaton.

We have seen before how to transform a deterministic finite automaton into a regular grammar.

Next we will see how to transform a regular grammar into a nondeterministic finite automaton.

This concludes the proof that the regular languages are precisely those which are accepted by finite
automata (of both kinds).

Theorem 4. Every regular language is accepted by a nondeterministic finite automaton.

Proof.

• Let G = (V,Σ,P,S) be a regular grammar and A := L(G). We will construct an NFA M = (Z,Σ, δ, {z0},E) such
that L(M) = A.

• Note that in every derivation in a regular grammar, the intermediate words contain exactly one variable,
and the variable must be at the end. This variable will become a state of the NFA. We need one more extra
state, which M enters when the variable is eliminated in the last step.

• Thus we let the state set be Z := V ∪ {X}. The only possible initial state is z0 := S, the start variable of G.
The set of end states is E := {X} if ε < A. If ε ∈ A, then we let E := {X,S}.

• Next we translate productions into transitions. We define δ : Z × Σ→ P(Z) by

δ(u, a) 3 v iff u→ av ∈ P
δ(u, a) 3 X iff u→ a ∈ P

That is,
δ(u, a) = {v | u→ av ∈ P} ∪ {X | u→ a ∈ P} .

Note that the end state X has no successor states. And if S is an end state, then by the “ε-Sonderregelung”
there is no way to get back to S, as it does not appear on the right side of a production.

• Now we have for n ≥ 1:

x[1 .. n] ∈ L(G)
⇔ there are variables z1, . . . , zn ∈ V such that we can derive

z0 = S⇒G x[1]z1 ⇒G x[1]x[2]z2 ⇒G . . .⇒G x[1 .. n − 1]zn−1 ⇒G x[1 .. n]
in G, that is, zi−1 → x[i]zi is a production in P,
where z0 = S is the start variable,
and zn−1 → x[n] is also a production in P

⇔ there are states z1, . . . , zn ∈ Z ∪ {X} such that
δ(zi−1, x[i]) 3 zi for i = 1, . . . ,n,
where z0 is the start state,
and zn = X is only end state which is feasible for a word of length ≥ 1

⇔ x[1 .. n] ∈ L(M)

Moreover, by construction we have ε ∈ L(M)⇔ ε ∈ A. �

8010 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

8.10 Regular expressions

Regular expressions are perhaps the most popular way to describe regular languages in formal terms.

Introductory Examples.

• At a UNIX shell, you might type:

> ls s*[re]?t*x

script.aux script.tex slides.tex

Here we have used the “wildcard” characters * and ?.

• The PROSITE database contains common motifs of protein families, some of which are described by
(a restricted form of) regular expressions. The following two lines are from the PROSITE entry with
accession number PS00518, which contains a pattern for a zinc finger C3HC4 domain:

ID ZINC_FINGER_C3HC4; PATTERN.

PA C-x-H-x-[LIVMFY]-C-x(2)-C-[LIVMYA].

The precise syntax used for regular expressions varies. Here is one.

Definition. A regular expression γ and the language L(γ) it represents are defined inductively by the
following rules.

1. ∅ is a regular expression. It denotes the empty language. L(∅) = ∅.

2. ε is a regular expression. Its language consists of the empty word. L(ε) = {ε}.

3. For each single letter, a ∈ Σ, a is a regular expression. L(a) = {a}.

4. Let α and β be regular expressions. Then the following are also regular expressions: (Closure properties)

(i) αβ with L(αβ) := L(α)L(β) product
(ii) (α | β) with L((α | β)) := L(α) ∪ L(β) union

(iii) (α)∗ with L((α)∗) := (L(α))∗ star hull

Some observations.

1. For every regular expression α, it holds αε = εα = α and α∅ = ∅α = ∅.

2. Let x = x[1 .. n] ∈ Σ∗. Then x is a regular expression and L(x) = {x}, by rules 2., 3., and 4.(i).

3. Let A = {x1, x2, . . . , xk} ⊆ Σ∗ be a finite language. Then (. . . ((x1 | x2) | x3) . . . | xk) is a regular expression and
L((. . . ((x1 | x2) | x3) . . . | xk)) = A, by rule 4.(ii) and the previous observation.

We shall rather write this expression as (x1 | x2 | x3 | . . . | xk).

Example 1.
The language

L = {x ∈ {a, b}∗ | x contains aa as a substring }

can be represented by the following regular expression:

(a | b)∗aa(a | b)∗ .

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8011

Example 2.
The language

L = {x ∈ {a, b}∗ | x does not contain aa as a substring }

can be represented by the following regular expression:

(b | ab)∗(a | ε)

This can be seen as follows. A DFA for L is

a

a a

b

z2z1 z3

b
b

We have δ(z1, x) = z1 iff x ∈ L((b | ab)∗). After that we can make one more transition from z1 to z2 reading an a.

8.11 Finite automata and regular expressions are equivalent

Theorem 5 (Kleene). A language is regular if and only if it is described by a regular expression.

(the following proof is not needed for the examination. You can read it at your convenience).

Proof. We show both inclusions in turn.

(⇐) Let γ be a regular expression. We show that L(γ) is accepted by a nondeterministic finite automaton.
We follow the cases in the inductive definition of regular expressions.

Cases 1., 2., and 3. are trivial: Clearly there are NFAs for L(∅) = ∅, for L(ε) = {ε}, and for L(a) = {a} (where
a ∈ Σ).

Case 4.(ii): γ has the form γ = (α | β).

We can assume by induction that we already have two NFAs M1 = (Z1,Σ, δ1,U1,E1) and M2 = (Z2,Σ, δ2,U2,E2)
satisfying L(α) = L(M1), L(β) = L(M2), and Z1 ∩ Z2 = ∅.

Then we can simply take the union of M1 and M2. That is, we build the NFA M := (Z1 ∪Z2,Σ, δ1 ∪ δ2,U1 ∪

U2,E1∪E2). Here δ1∪δ2 subsumes all the transitions present in M1 and M2. There are no transitions “between”
the M1 and M2 parts in M. Formally, (δ1 ∪ δ2)(U) = δ1(U ∩ Z1) ∪ δ2(U ∩ Z2).

Then L(M) = L(α) ∪ L(β) = L(γ).

Case 4.(i): γ has the form γ = αβ.

Here we plug two NFAs M1 and M2 for L(α) and L(β) “in series” to obtain M. (We can assume that the
state sets are disjoint, Z1 ∩ Z2 = ∅.)

M has the start state set U1, if ε < L(α). If ε ∈ L(α), then M has the start state set U1 ∪U2. In both cases, the
end state set of M is E2.

8012 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

Moreover we add arcs from M1 to M2 as follows: For every arc δ1(u, a) 3 v in M1 that enters a state in E1,
we add a couple of arcs δ(u, a) 3 s2, for all s2 ∈ U2, in M. Hence in M we can reach a state in U2 if and only if
the characters which are read along the way form a word in L(M1). After that the rest of the input is processed
using M2.

This implies L(M) = L(M1)L(M2) = L(α)L(β) = L(αβ) = L(γ).

Case 4.(iii): γ has the form γ = (α)∗.

Again let M1 as above be an NFA for L(α). Then we construct an NFA M which accepts L((α)∗) as follows.
M has the same states, initial states, and end states as M1. The difference is that we add transitions similar to
Case 4.(ii). Namely, for each transition δ1(u, a) 3 v, where v ∈ E1, we add a couple of arcs δ(u, a) 3 s1 for all
s1 ∈ U1. This means that whenever we would reach an end state of M1, we can as well start reading another
word of L(M1) from one of its initial states.

Using the union construction, we can add ε to the accepted language using Case 4.(i), if necessary. Note
that L((M)∗) = L(ε | L(M1)+), as needed.

(⇒) Now let M = (Z,Σ, δ, z1,E) be a deterministic finite automaton. We show that L(M) is described by a
regular expression.

We can assume w.l.o.g. that the vertex set of M is numbered Z = {z1, z2, . . . , zn} and z1 is the initial state.
The key to the proof is the next definition.

Rk
i, j := {x ∈ Σ∗ | δ∗(zi, x) = z j and

δ∗(zi, x[1 .. `]) ∈ {z1, . . . , zk} for all 1 ≤ ` < |x|} .

A word x is in Rk
i, j iff when we start reading x beginning in state zi, then we end up in state x j, and moreover,

all intermediate states (i. e. those states where we have been after reading a proper, non-empty prefix x[1 .. `]
of x), have indices at most k.

Rk
i, j is so important because it allows use to solve the problem using a 3-parameter recursion and dynamic

programming.

The initial cases k = 0 are easy: No intermediate states are allowed at all, thus we have

R0
i, j =

{a ∈ Σ | δ(zi, a) = z j} for i , j
{a ∈ Σ | δ(zi, a) = zi} ∪ {ε} for i = j .

In both cases, R0
i, j is a finite language and we can write down a regular expression for it.

Now for the recursive case k ≥ 1. The difference between Rk+1
i, j and Rk

i, j is that zk+1 becomes allowed as an

intermediate state. Thus we can partition any word x ∈ Rk+1
i, j \ Rk

i, j between its visits of the state zk+1.

We start at zi. Either we go to z j without visiting zk+1. Or we visit zk+1 at least once. The substring between
two consecutive visits of zk+i is a word from the language Rk

k+1,k+1. Then we go from zk+1 to z j without another
visit at zk+1. Thus it holds:

Rk+1
i, j = Rk

i, j ∪ Rk
i,k+1(Rk

k+1,k+1)∗Rk
k+1, j .

This translates almost literally into a regular expression. Assume by induction that we have regular
expressions γk

i, j such that Rk
i, j = L(γk

i, j). Then

γk+1
i, j := (γk

i, j | γ
k
i,k+1(γk

k+1,k+1)∗γk
k+1, j)

is a regular expression such that L(γk+1
i, j) = Rk+1

i, j .

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8013

To summarize,

Rk
i, j := {x ∈ Σ∗ | δ∗(zi, x) = z j and

δ∗(zi, x[1 .. `]) ∈ {z1, . . . , zk} for all 1 ≤ ` < |x|} ,

where

R0
i, j =

{a ∈ Σ | δ(zi, a) = z j} for i , j
{a ∈ Σ | δ(zi, a) = zi} ∪ {ε} for i = j .

Rk+1
i, j = Rk

i, j ∪ Rk
i,k+1(Rk

k+1,k+1)∗Rk
k+1, j .

When we have reached k = n, then the restriction which is imposed by the upper index in Rk
i, j becomes

void.

Note that
L(M) =

⋃
{Rn

1, j | z j ∈ E} .

Therefore we let
γ := (γn

1,i1 | . . . | γ
n
1,i`) ,

where E = {i1, ..., i`} is an enumeration of the end states.

Then L(γ) = L(M). �

8.12 Example for Kleene’s transformation

We have seen a DFA for the language

L = {x ∈ {a, b}∗ | (#a(x) − #b(x)) ≡ 1 mod 3}

before.

The recurrences from the theorem yield

γ0
i, j 0 1 2

0 ε a b

1 b ε a

2 a b ε

γ1
i, j 0 1 2

0 ε a b

1 b (ε | ba) (a | bb)

2 a (b | aa) (ε | ab)
z1 z2z0

a

b

a

b

a

b

γ2
i, j 0 1 2

0 (ε | a(ba)∗b) a(ba)∗ (b | a(ba)∗(a | bb))

1 (ba)∗b (ba)∗ (ba)∗(a | bb)

2 (a | (b | aa)(ba)∗b) (b | aa)(ba)∗ ((ε | ab) | (b | aa)(ba)∗(a | bb))

Since z2 is the only end state, a regular expression for L is

γ3
0,1 = γ2

0,2(γ2
2,2)∗γ2

2,1

= (b | a(ba)∗(a | bb))(((ε | ab) | (b | aa)(ba)∗(a | bb)))∗(b | aa)(ba)∗ .

8014 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

Finally we return to context-free grammars and introduce the automaton that accepts a context-free
language, the pushdown automaton (PDA).

We will first define it and then show at an example how we can decide whether a string is in the language
generated by a given CFG.

Recall our small hairpin generating CFG:

S→ aW1u | cW1g | gW1c | uW1a,
W1 → aW2u | cW2g | gW2c | uW2a,
W2 → aW3u | cW3g | gW3c | uW3a,
W3 → gaaa | gcaa.

There is an elegant representation for derivations of a sequence in a CFG called the parse tree. The root of
the tree is the nonterminal S. The leaves are the terminal symbols, and the inner nodes are nonterminals.

For example if we extend the above productions with S→ SS we can get the following:

a g gc a a a c u g g g u g c a a a c c

W3

W2

W1

S

W3

W2

W1

S

S

Using a pushdown automaton we can parse a sequence left to right according.

Definition.
A (nondeterministic) PDA is formally defined as a 6-tuple:
M = (Z, Σ, Γ, δ, z0,S) where

• Z is a finite set of states, Σ is a finite input alphabet, Γ is a finite stack alphabet

• δ : Z × Σ ∪ {ε} × Γ −→ P(Z × Γ∗) is the transition function, where P(S) denotes the power set of S.

• z0 is the start state, S is the initial stack symbol

• S ∈ Γ is the lowest stack symbol.

There is of course also a deterministic version, however the nondeterministic PDA allows for a simple
construction when a CFG is given.

If M is in state z and reads the input a and if A is the top stack symbol, then M can go to state z′ and replace
A by other stack symbols.

This implies, that A can be deleted, replaced, or augmented.

Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40 8015

After reading the input, the automaton accepts the word if the stack is empty.

Given a CFG G = (V,Σ,P,S) we define the corresponding PDA as M = ({z},Σ,V ∪ Σ, δ, z,S). Using the
production set P we can define δ. For each rule A → α ∈ P we define δ such that (z, α) ∈ δ(z, ε,A) and
(z, ε) ∈ δ(z, a, a).

Lets look at our example:

S→ aW1u | cW1g | gW1c | uW1a,
W1 → aW2u | cW2g | gW2c | uW2a,
W2 → aW3u | cW3g | gW3c | uW3a,
W3 → gaaa | gcaa.

Hence M = ({z}, {a, c, g,u}, {a, c, g,u,W1,W2,W3,S}, δ, z,S) with δ as explained (blackboard).

Lets see how the automaton parses a word in our hairpin language.

Given our CFG, the automaton’s stack is initialized with the start symbol S. Then the following steps are
iterated until no symbols remain. If the stack is empty when no input symbols remain, then the sequence has
been successfully parsed.

1. Pop a symbol off the stack.

2. If the popped symbol is a non-terminal: Peek ahead in the input and choose a valid production for the
symbol. (For deterministic PDAs, there is at most one choice. For non-deterministic PDAs, all possible
choices need to be evaluated individually.) If there is no valid transision, terminate and reject.

Push the right side of the production on the stack, rightmost symbols first.

3. If the popped symbol is a terminal: Compare it to the current symbol of the input. If it matches, move
the automaton to the right on the input. If not, reject and terminate.

Lets try this with the string gccgcaaggc.

Example. (The current symbol is written using a capital letter):

Input string Stack Operation

Gccgcaaggc S Pop S. Produce S->gW1c

Gccgcaaggc gW1c Pop g. Accept g. Move right on input.

gCcgcaaggc W1c Pop W1. Produce W1->cW2g

gCcgcaaggc cW2gc Pop c. Accept c. Move right on input.

gcCgcaaggc W2gc Pop W2. Produce W2->cW3g

gcCgcaaggc cW3ggc Pop c. Accept c. Move right on input.

gccGcaaggc W3ggc Pop W3. Produce W3->gcaa

gccGcaaggc gcaaggc Pop g. Accept g. Move right on input.

... ... (several acceptances)

gccgcaaggC c Pop c. Accept c. Move right on input.

gccgcaaggc$ - Stack empty, input string empty. Accept!

8016 Finite automata and regular grammars, by Clemens Gröpl, January 4, 2015, 20:40

8.13 Summary

• Formal languages are a basic means in computer science to formally describe objects that follow certain
rules, that is that can be generated using a grammar.

• Two fundamental views on formal languages are i) to view them as generated by a grammar, or ii) to
view them as accepted by an automaton.

• The Chomsky hierarchy places different restrictions on the grammars. This limits the possibilities you
have, but makes the decision whether a word is in such a language easier.

• The nondeterministic automata (DFA and PDA) are as powerful as te deterministic counterparts in
deciding whether a word is in a language or not. However, it is easier to define a nondeterministic
automaton.

• The importance for bioinfomatics lies in the ”stochastic versions” of the grammars which are used to
train ”acceptors” for biological sequence objects (i.e. Genes using Hidden Markov models, or RNA using
stochastic CFGs).

	Introduction
	MSA and evolutionary trees
	Protein families
	Sequence Assembly
	Conservation of structural elements
	The dynamic programming algorithm for MSA
	WSOP score
	Scoring along a tree
	Scoring along a star
	Scoring Schemes
	Progressive alignment
	Aligning alignments
	Divide-and-conquer alignment
	Multiple Match refinement
	T-Coffee
	Generating primary libraries
	Derive library weights
	Combine libraries
	Extending the primary library
	Computing the progressive alignment
	Combining TCoffee with the multiple srm
	Combining TCoffee with the multiple srm
	Combining TCoffee with the multiple srm
	Combining TCoffee with the multiple srm
	Combining TCoffee with the multiple srm
	Summary

