
Implementation Structure

Jochen Singer

June 15, 2011

Abstract

This document describes the structure of the classes chosen to imple-
ment the FM-Index by Ferragina and Manzini in SeqAn. In addition the
steps necessary to implement the index will be shown and described. This
document is based on [3]. A very short description of the Index can be
found here: FM-Index wiki.

This document will describe several different implementation of the FM-
Index. Even though they all differ in one or more aspects they have the following
properties in common:

• They are based on the Burrows-Wheeler-Transform (BWT) to rearrange
the characters of a given text T. The Burrows-Wheller transformed text
(T*) is usually more efficient compressible then the original text T, since
equal substring tend to group together.

• T* is compressed to save memory.

• Usually some auxiliary data are stored to use the index as a fast searching
tool.

The next section will introduce the BWT. Afterwards we will describe the
original FM-index created by Ferragina and Manzini [1]. The description will
be followed by sections in which other implementations are introduced and com-
pared.

1 The Burrows-Wheeler-Transform

Text

2 The FM-Index

2.1 The Original FM-Index

• Opportunistic Data Structures with Applications [1]

• Indexing compressed text [3]

1

https://www.mi.fu-berlin.de/w/ABI/FMIndex

As can be seen in the previous chapter the BWT is a rearrangement of
characters of a given text. The rearrangement is based on a data structure
which sorts suffices of the original string and groups them together according
to their similarity. In doing so the BWT creates a new string T* in which equal
characters tend to appear together. This observation can be used to efficiently
compress T*. In addition the underlying suffix array structure can be used to
efficiently search for patterns P in T.

We will now first introduce the searching procedure before focusing on the
compression.

2.1.1 Searching based on the BWT

2.1.2 Compression of the BWT

1. move-to-front encoding (MTF)

2. run-length encoder

3. variable-length-prefix code

2.1.3 Counting occurrences in the compressed BWT

The previous two sections described how we can efficiently search for a pattern
P in text T and how we can compress T. However, so far we are only fast or
space efficient, but not both at the same time. This section will describe how
Ferragina and Manzini overcame this shortcoming.

In order to answer how many times a given character appeared before a given
position in T* in constant time they partition T* into buckets. To be precise,
they introduce two layers of partitioning. The first layer consists of buckets
which span a substring of T* of length l, while the second layers consists of
super buckets which cover a substring of length l2. The following information
are then stored and associated with the buckets, respectively super buckets:

• Super buckets

– NOj [|Σ|] - Stores the number of occurrences of c in NOj[c] in T*[1,jl2].
In other words: NOj [|Σ|] stores the number of occurrences of a given
character in T* until the given super bucket.

– W[n/l2] - Stores the sum of the compressed buckets until the given
super bucket.

• Buckets

– NO′j [|Σ|] - Stores the number of occurrences of a given character in
T* until the given bucket starting from the preceding super bucket.

– W[n/l2] - Stores the sum of the compressed buckets until the given
super bucket starting from the preceding super bucket.

• Substrings of the buckets

– MTF[n/l] - Stores in MTF[j] a picture of the state of the MTF-list
at the beginning of the encoding of T* in the bucket j.

2

|Σ| l l’ dimension number of memory
3. 4 . entries consumption [MB]

5 8 40 1099511627776 3125 1.37E+017 51539607552
5 16 80 1.21E+024 3125 4.68E+044 1.51E+023

Table 1: Space consumption of S for several chosen settings.

– S - Table S is the most space consuming and complicated table. It can
be interpreted as a four dimensional array which stores the number of
occurrences of a given character in a given substring. In more detail,
S[c, h, BZj , MTF[j]] stores for every character c for every length
h (h ¡= l) for every possible compressed string BZj and every
possible picture of the MTF-list the number of occurrences of c.
On first view this four dimensional array does not seem to enable a
space efficient storage of the FM-index at all. However, the key
observation is that several positions in T* may be covered
by a single entry in S.

Using the data structure introduced above one can determine the number of
occurrences of a given character at a specific position in constant time. This is
done by adding the information of the proceeding super bucket and bucket to the
value in the lookup table S. However this approach has an obvious bottleneck
which is the space consumption of table S. The following section will analyze
the amount of memory needed in total and especially for S.

Memory Consumption of Table S As described in 2.1.3 table S can be
referred to as an four dimensional array. We will now state the number of
entries of each dimension depending on the different parameters.

• The key for the first dimension is a character c. Since the are five different
ones we have five different entries.

• The key for the second dimension is the length of a substring in a bucket.

• BZj is used as a key for the third dimension and represents a binary
string of size l’. l’ depends on the used encoding scheme. In this case
l′ = (1 + 2blogΣc) ∗ l. Note that [3] states that each possible compressed
bucket BZj will be represented.

• The last dimension represents all possible MTF list states, which are |Σ||Σ|
many.

Table 1 summarizes the observation mentioned above and states explicit
memory consumptions for different scenarios.

Memory Consumption Excluding Table S The previous section showed
that the memory consumption of table S is too large to be efficiently handled.
Nevertheless we will now analyse the memory consumption of the remaining
FM-index since we can trade the storage of S with a small speed trade off (see
section 2.2 for details).

3

text bucket number of number of memory consumption [MB]
length size buckets super buckets without W with W
3000 8 375 46.88 0.0032 0.0038

3000000 8 375000 46875 5.8008 6.9609
3000000000 8 375000000 46875000 8437.5000 10125.0000

3000 16 187.5 11.72 0.0015 0.0018
3000000 16 187500 11718.75 2.7393 3.2871

3000000000 16 187500000 11718750 3984.3750 4781.2500
3000 32 93.75 2.93 0.0007 0.0009

3000000 32 93750 2929.69 1.3293 1.5952
3000000000 32 93750000 2929687.5 1933.5938 2320.3125

3000 64 46.88 0.73 0.0004 0.0004
3000000 64 46875 732.42 0.6546 0.7855

3000000000 64 46875000 732421.88 952.1484 1142.5781

Table 2: Memory consumption for the bucket structure for several chosen bucket
sizes and text length.

Table 2 shows the memory consumption for the described bucket structure
without table S, the compressed String and suffix array for several bucket sizes
and text length.

Table 2 showed that it is feasible to store the bucket structure in main
memory and therefore guarantee fast access.

2.1.4 Searching the compressed BWT

In order to return the exact pattern positions in the text Ferragina and Manzini
marked every nth position, with η = θ(log2n) and n being the length of the
text. At query time it is tested whether s, with sp <= s <= ep, is a marked
row. If this is the case there is nothing to be done and the correct text position
can be returned. Otherwise the LF-mapping is used to find a marked row and
the text position can be computed. Note that sp and ep were determined in
2.1.3.

2.2 A Practical Implementation of the FM-Index

• An experimental study of an opportunistic index [2]

In [2] Ferragina and Manzini present a practical solution of the FM-index
described above. In contrast to original FM-index this practical solution does
not store the table S. In doing so they are able to reduce the memory consump-
tion of the index at the cost of speed at query time. In order to compute the
occurrence of a given character c at a given location loc the substring of the
bucket containing loc is decompressed and the number of occurrences of c from
the beginning of the bucket to loc are counted.

2.3 An alphabet friendly FM-index

• An alphabet friendly FM-index [4]

4

The original FM-index is not particular alphabet friendly. The reason for
this is a dependence on the alphabet size when accessing an element of the
compressed text. Instead of decompressing the text in the corresponding bucket
one uses the occurrence function. This is possible since occ(i,c) and occ(i+1,c)
are only different if c appears at position i in T*. Using this method one has
to go through the whole alphabet in order to determine c in the worst case.
However, Ferragina and Manzini developed an alphabet friendly version of the
index which will be described in the following.

In contrast to the already described implementations of the index in section
2.1 and 2.2 the compression scheme of the alphabet friendly FM-index is based
on wavelet trees. Instead of using MTF encoding, run-length encoding and a
variable-length-prefix code a wavelet tree is constructed for every bucket. The
wavelet tree can then be used to search in O(m log|Σ|) for occurrences of a given
pattern.

In order to decide which structure to use one needs to estimate the memory
consumption of the compressed text. While the compression of the original
proposed compression scheme greatly depends on the entropy of the text the
compressed text using wavelet tress needs exactly n ∗ log|Sigma| bits plus some
auxiliary memory for the tree structure.

The two compression schemes result in 11.7 MB and 12.8 MB respectively
usage of memory for the human chromosome 22. Note that the auxiliary memory
consumption for the tree structure is not included in the 12.8 MB. However, the
result shows that the wavelet tree does not use much more memory than the
original compression scheme. In fact, the wavelet tree does not need a hash
table to calculate the number of occurrences of a given character at a given
location in constant time. One can use the bucket structure described above
and use constantly many bit operations1 to achieve a O(1) runtime.

References

[1] P. Ferragina and G. Manzini. Opportunistic data structures with appli-
cations. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, pages 390–, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[2] Paolo Ferragina and Giovanni Manzini. An experimental study of an oppor-
tunistic index. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’01, pages 269–278, Philadelphia, PA, USA,
2001. Society for Industrial and Applied Mathematics.

[3] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM,
52:552–581, July 2005.

[4] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro.
An alphabet-friendly fm-index. In Alberto Apostolico and Massimo Melucci,
editors, String Processing and Information Retrieval, Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg.

1http://graphics.stanford.edu/ seander/bithacks.html#CountBitsSetParallel

5

	The Burrows-Wheeler-Transform
	The FM-Index
	The Original FM-Index
	Searching based on the BWT
	Compression of the BWT
	Counting occurrences in the compressed BWT
	Searching the compressed BWT

	A Practical Implementation of the FM-Index
	An alphabet friendly FM-index

