
1 Fast string matching

We will discuss

• “Online” methods

– Shift-And/Shift-Or
– Horspool

• “Index-based” methods

– Suffix trees
– Suffix arrays

This exposition is based on earlier versions of this lecture and the following sources, which are all recom-
mended reading:

• Shift-And/Shift-Or, Horspool

1. Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, pages 15ff.
2. A nice overview of the plethora of string matching algorithms with implementations can be found

under http://www-igm.univ-mlv.fr/˜lecroq/string.

• Suffix trees, suffix arrays

1. Dan Gusfield: Algorithms on Strings, Trees, and Sequences. Computer Science and Computational
Biology. Cambridge University Press, Cambridge, 1997, pages 94ff. ISBN 0-521-58519-8

1.1 Thoughts about string matching

We will get to know several string matching algorithms for a single pattern (two of which are very practical)
and learn the basics about suffix trees and suffix arrays, two central data structures in computational biology.

Let’s start with the classical string matching problem:

The task at hand is to find all occurrences of a given pattern p = p1, . . . , pm in a text T = t1, . . . , tn usually
with n� m.

The algorithmic ideas of exact string matching are useful to know, although in computational biology
algorithms for approximate string matching, or indexed methods are of more use. However, in online scenarios
it is often not possible to precompute an index for finding exact matches.

String matching is known for being amenable to approaches that range from the extremely theoretical to
the extremely practical.

One example is the famous Knuth-Morris-Pratt algorithm which is in practice twice as slow as the brute
force algorithm, and the well-known Boyer-Moore algorithm which, in its original version, has a worst case
running time of O(nm) but is quite fast in practice.

Some easy terminology: Given strings x, y, and z, we say that x is a prefix of xy, a suffix of yx, and a factor
(:=substring) of yxz.

http://www-igm.univ-mlv.fr/~lecroq/string

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1001

x y xy xy z

prefix suffix factor

In general, string matching algorithms follow three basic approaches. In each a search window of the size
of the pattern is slid from left to right along the text and the pattern is searched within the window. The
algorithms differ in the way the window is shifted.

· · · · · ·

search window

T

p

1. Prefix searching. For each position of the window we search the longest prefix of the window that is also
a prefix of the pattern.

· · · · · ·

search window

forward search

T

p

2. Suffix searching. The search is conducted backwards along the search window. On average this can avoid
to read some characters of the text and leads to sublinear average case algorithms.

· · · · · ·

search window

suffix search

T

p

3. Factor searching. The search is done backwards in the search window, looking for the longest suffix of the
window that is also a factor of the pattern.

· · · · · ·

search window

factor search

T

p

1.2 Prefix based approaches

Suppose we have read the text up to position i and that we know the length of the longest suffix p′ of the text
read that corresponds to a prefix of p. If |p′| = |p| we have found an occurrence, otherwise we have to shift the
search window in a safe way.

The main algorithmic problem is to efficiently compute this length when reading the next character. There
are two classical ways:

1. compute the longest suffix of the text read that is also a prefix of p and for which the next character
is different. (used by the Knuth-Morris-Pratt algorithm). This insures that the implied shift is safe and
allows the detection of a match.

2. maintain the set of all prefixes of p that are also suffixes of the text read and update the set when reading
a character (e.g., the Shift-And algorithm).

1002 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

1.3 Prefix based approaches

The KMP algorithm runs in time O(n + m) (analysis omitted in this lecture).

Since the KMP algorithm is inferior in practice we concentrate on the Shift-And and the Shift-Or algorithms,
which maintain the set of all prefixes of p that match a suffix of the text read.

The algorithms use bit-parallelism to update this set for each new text character. The set is represented by
a bit mask D = dm, . . . , d1.

We start with the Shift-And algorithm, which is easier to explain. The Shift-Or algorithm then results as
an implementation trick.

1.4 Shift-And and Shift-Or

We keep the following invariant:

There is a 1 at the j-th position of D if and only if p1, . . . , p j is a suffix of t1, . . . , ti.

iT

p 1 mj1 j2 D:
m j2 j1 1

1 11 00 · · ·
· · · · · ·

· · · · · ·
· · ·

If the size of p is less than the word length, this array will fit into a computer register.

When reading the next character ti+1, we have to compute the new set D′. We use the following fact:

Observation. A position j + 1 in the set D′ will be active if and only if

1. the position j was active in D, that is, p1, . . . , p j was a suffix of t1, . . . , ti, and

2. ti+1 matches p j+1.

The algorithm builds a table B which stores a bit mask bm, . . . , b1 for each character of Σ. The mask B[c] has
the j-th bit set if p j = c.

Example. p = atat, Σ = {c, g, t, a}
B[c] = 0000, B[g] = 0000, B[t] = 1010, B[a] = 0101

Initially we set D = 0m and for each new character tpos we update D using the formula

D′ = ((D� 1) | 0m−11) & B[tpos] .

This update maintains our invariant using the above observation.

The shift operation marks all positions as potential prefix-suffix matches that were such matches in the
previous step (notice that this includes the empty string ε). In addition, to stay a match, the character tpos has
to match p at those positions. This is achieved by applying an &-operation with the corresponding bitmask
B[tpos].

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1003

1.5 Shift-And Pseudocode

(1) Input: text T of length n and pattern p of length m
(2) Output: all occurences of p in T

(4) Preprocessing:
(5) for c ∈ Σ do B[c] = 0m;
(6) for j ∈ 1 . . .m do B[p j] = B[p j] | 0m− j10 j−1;
(7) Searching:
(8) D = 0m;
(9) for pos ∈ 1 . . . n do

(10) D = ((D� 1) | 0m−11) & B[tpos];
(11) if D & 10m−1 , 0m then output “p occurs at position pos −m + 1”;

1.6 Shift-And and Shift-Or

So what is the Shift-Or algorithm about? It is just an implementation trick to avoid a bit operation, namely the
| 0m−11 in line 10.

In the Shift-Or algorithm we complement all bit masks of B and use a complemented bit mask D. Now the
� operator will introduce a 0 to the right of D′ and the new suffix stemming from the empty string is already
in D′. Obviously we have to use a bit | instead of an & and report a match whenever dm = 0.

Let’s look at an example of Shift-And and Shift-Or.

1.7 Example

Find all occurrences of the pattern p = atat in the text T = atacgatatata.1

Shift-And Shift-Or

B[a] = 0101 B[a] = 1010

B[t] = 1010 B[t] = 0101

B[*] = 0000 B[*] = 1111

D = 0000 D = 1111

1 Reading a

0001 1110

0101 1010

---- ----

0001 1110

2 Reading t 3 Reading a

0011 1100 0101 1010

1010 0101 0101 1010

------------- -------------

1Note: The bit order is reversed in the Java applet on http://www-igm.univ-mlv.fr/˜lecroq/string.

http://www-igm.univ-mlv.fr/~lecroq/string

1004 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

0010 1101 0101 1010

4 Reading c 5 Reading g

1011 0100 0001 1110

0000 1111 0000 1111

------------- -------------

0000 1111 0000 1111

6 Reading a 7 Reading t

0001 1110 0011 1100

0101 1010 1010 0101

------------- -------------

0001 1110 0010 1101

8 Reading a 9 Reading t

0101 1010 1011 0100

0101 1010 1010 0101

------------- -------------

0101 1010 1010 0101

Hence, in step 9, we found the first occurrence of p at position 9 − 4 + 1 = 6.

The running time of the algorithms is O(n), assuming

1. a constant alphabet size

2. the operations on D can be done in constant time.

1.8 Suffix based approaches

As noted above, in the suffix based approaches we match the characters from the back of the search window.
Whenever we find a mismatch we can shift the window in a safe way, that means without missing an occurrence
of the pattern.

We present the idea of the Horspool algorithm, which is a simplification of the Boyer-Moore algorithm.

· · · · · ·

search window

suffix search

T

p

For each position of the search window we compare the last character β with the last character of the
pattern. If they match we verify until we find the pattern or fail on the text character σ. Then we simply shift
the window according to the next occurrence of β in the pattern.

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1005

text

pattern

u

safe shift

= =

σ

α

6=

no β in this part

β

β

no β in this part

βWhy safe?

Input: text T of length n and pattern p of length m
Output: all occurences of p in T

Preprocessing:
for c ∈ Σ do d[c] = m;
for j ∈ 1 . . .m − 1 do d[p j] = m − j
Searching:
pos = 0;
while pos ≤ n −m do

j = m;
while j > 0 ∧ tpos+ j = p j do j−−;
if j = 0 then output “p occurs at position pos + 1”
pos = pos + d[tpos+m];

1.9 Horspool example

We search for the string announce in the text CPM annual conference announce.

m=8, d = a c n o u *

7 1 2 4 3 8

1) | CPM_annu | al_conference_announce

u != e, d[u]=3

2) CPM | _annual_ | conference_announce

_ != e, d[_] = 8

3) CPM_annual_ | conferen | ce_announce

n != e, d[n] = 2

4) CPM_annual_co | nference | _announce

e == e => verify until it fails with e != u => d[e] = 8

1006 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

5) CPM_annual_conference | _announc | e

c != e, d[c]=1

6) CPM_annual_conference_ | announce

e == e => verify until occurrence is found

1.10 Experimental Map

(Gonzalo Navarro & Mathieu Raffinot, 2002)

|Σ|

2

4

8

16

32

64

2 4 8 16 32 64 128 256

DNA

English

m

Horspool

Shift-OR

BNDM∗

BOM∗∗

∗ Backward Nondeterministic DAWG Matching algorithm, factor-based, not covered in this lecture
∗∗ Backward Oracle Matching, factor-based, not covered in this lecture

1.11 Introduction

Exact string matching is used in many algorithms in computational biology as a first step:

Given a pattern p = p[1 . . .m], find all j occurrences of p in a text
T = T[1 . . . n].

This can readily be done with string matching algorithms in time O(m + n). If however, the text is very
long, we would prefer not to scan it completely for every query, but rather spend time O(m + j) per query.

To do that we have to preprocess the text. The preprocessing step is especially useful in scenarios where
the text is relatively constant over time (e. g., a genome), and we will search for many different patterns.

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1007

In this lecture we first introduce such a preprocessing, namely the construction of a suffix tree. Later we
get to know the related, more space-efficient, suffix array.

Both are central data structures in computational molecular biology.

This is just a brief introduction, and we will skip some important topics. These will, however, be covered
in detail in future classes.

History.

• Weiner, 1973: suffix trees introduced, linear-time construction algorithm, “algorithm of the year”

• McCreight, 1976: reduced space-complexity

• Ukkonen, 1995: new algorithm, easier to describe

In this lecture, we will only cover a naı̈ve (quadratic-time) construction.

1.12 Suffix trees

Definition. Let T = T[1 .. n] be a text of length n over a fixed alphabet Σ. A suffix tree for T is a tree with n
numbered leaves and the following properties:

1. Every internal node other than the root has at least two children.

2. Every edge is labeled with a nonempty substring of T.

3. The edges leaving a given node have labels starting with different letters.

4. The concatenation of the labels of the path from the root to leaf i spells out the i-th suffix T[i . . . n] of T.
We denote T[i . . . n] by Ti.

b
a

n
a

n
e

a
n

an
e e

n
a
n
e

e

e

1 2
34

5

6banane

123456

1.13 Marking the end of T

Note that according to the above definition there is no suffix tree if a suffix of T is a prefix of another suffix of
T. For example for T = xabxa there is no leaf for the fourth suffix T4.

1008 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

This problem is easily overcome by adding a special letter $ to the alphabet which does not occur in T, and
putting it to the end of T. This way no suffix can be a prefix of another suffix.

T = xabxa
x

x
x

x
b

b
ba

a

a

a
a

$

$

$
$

$

123

4
5

6 $

The above figure shows a suffix tree for the string xabxa$.

1.14 Storing the edge labels efficiently

What about the space consumption? The total length of all edge labels in a suffix tree can easily be Ω(n2), e.g.,
for T = abc · · · xyz.

Therefore, we do not store the substrings T[i . . . j] of T in the edges, but only their start and end indices
(i, j). Nevertheless we keep thinking of the edge labels as substrings of T.

1.15 A naı̈ve algorithm for suffix tree construction

The naı̈ve algorithm for constructing a suffix tree is as follows:

We insert the suffixes T1,T2, . . . ,Tn (in this order) and modify the tree according to the definition.

1. Say we want to insert Ti into the current tree. We read the letters of Ti and walk down the path from the
root accordingly, until a mismatch occurs. At this point we have to branch off a new edge.

2. If the mismatch occurs in the midst of an edge, then we split it into two edges and branch off from the
inserted vertex.

3. Otherwise we can branch off from a vertex which is already present.

We need time O(n − i + 1) for the i-th suffix and hence the total running time is
n∑
1

O(n − i + 1) =

n∑
1

O(i) = O(n2) .

1.16 Searching with suffix trees

Given T and p. How do we find all occurrences of p in T?

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1009

Observation. Each occurrence has to be a prefix of some suffix. Each such prefix corresponds to a path
starting at the root.

1. Of course, as a first step, we construct the suffix tree for T. Using the naı̈ve method this takes quadratic
time, but linear-time algorithms (e.g., Ukkonen’s algorithm) exist.

2. Try to match p on a path, starting from the root. Three cases:

(a) The pattern does not match→ p does not occur in T

(b) The match ends in a node u of the tree. Set x = u.

(c) The match ends inside an edge (v,w) of the tree. Set x = w.

3. All leaves below x represent occurrences of p.

Example. (completion by blackboard)

b
a

n
a

n
e

a
n

an
e e

n
a
n
e

e

e

1 2
34

5

6banane

123456

Theorem. We can find all j occurrences of a pattern p = p[1 . . .m] in a suffix tree in time O(m + j).

Proof.

• Finding x takes time O(m).

• Collecting the j leaves (e.g., using depth-first search) takes time O(j).2

• Together, this yields O(m + j).

2Why? How many nodes does the subtree have?

1010 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

1.17 Suffix arrays

Suffix arrays were introduced by Manber and Myers in 1989 (and published in 1993).

While both suffix trees and suffix arrays require O(n) space, suffix arrays are more space efficient. A recent
suffix tree implementation requires 15-20 Bytes per character. For suffix arrays, as few as 5 bytes are sufficient
(with some tricks).

This is offset by a moderate increase in search time from O(m+ j) to O(m+ j+ log n). In practice this increase
is counterbalanced by better cache behavior.

Definition. Given a text T of length n, the suffix array for T, called suftab, is an array of integers of range 1
to n + 1 specifying the lexicographic ordering of the n + 1 suffixes of the string T$.

mississippi$

123456789012 mississippi$

ississippi$

ssissippi$

sissippi$

issippi$

ssippi$

sippi$

ippi$

ppi$

pi$

i$

$

$

i$

ippi$

issippi$

ississippi$

mississippi$

pi$

ppi$

sippi$

sissippi$

ssippi$

ssissippi$

i

1
2
3
4
5
6
7
8
9
10
11
12

Ti Tsuftab[i] suftab[i]

12
11
8
5
2
1
10
9
7
4
6
3

suftab(10) = 4 means:
T4 is number 10 in the
sorted list.

We will assume that n fits into 4 bytes of memory. Then the basic form of a suffix array needs only 4n
bytes. The suffix array can be computed by sorting the suffixes, as illustrated in the above example.

1.18 Why another algorithm?

The suffix array can be constructed in O(n2 log n) time by sorting the suffix indices using a sorting algorithm3.
But such an approach fails to take advantage of the fact that we are sorting a collection of related suffixes. We
cannot get an O(n) time algorithm in this way.

Alternatively, we could first build a suffix tree in linear time, then transform the suffix tree into a suffix
array in linear time∗, and finally discard the suffix tree. Of course, sufficient memory has to be available to
construct the suffix tree. Thus this approach fails for large texts.

In this lecture, we will not discuss algorithms to construct a suffix array. The original construction proposed
by Manber and Myers needs (essentially) 8n bytes and runs in O(n log n) time. Meanwhile there are several
algorithms that construct the array in time O(n) directly.

3How?

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1011

1.19 Searching

After constructing our suffix array we have the table suftab , which gives us the suffixes of T in sorted order.
Suppose now we want to find all j instances of a pattern p = p1, . . . , pm of length m < n in T.

Then let
Lp = min{k | p = T suftab [k][1 . . .m] or k = n}

and
Rp = max{k | p = T suftab [k][1 . . .m] or k = −1} .

Lp

Rp

Since suftab is ordered, it follows that p matches a suffix Ti if and only if i = suftab [k] for some k ∈ [Lp,Rp].
Hence a simple binary search can find Lp and Rp. Each comparison in the search needs O(m) character
comparisons, and we can find all j instances in the string in time O(m log n + j).

This is the simple code piece to search for Lp (the search for Rp is similar):

if p ≤ T suftab [1] then Lp = 1;
else if p > T suftab [n] then Lp = n + 1;
else

(L,R) = (1,n);
while R − L > 1 do

M = d(L + R)/2e;
if p ≤ T suftab [M] then R = M; else L = M;

Lp = R;

For example if we search for p = aca in the text T = acaaacatat$ Lp = 4 and Rp = 5. We find the value Lp
and Rp respectively, by setting (L,R) to (1,n) and changing the borders of this interval based on the comparison
with the suffix at position d(L+R)/2e, e.g., we find Lp with the sequence: (1, 11)⇒ (1, 6)⇒ (1, 4)⇒ (3, 4). Hence
Lp = 4.

1 $

2 aaacatat$

3 aacatat$

4 acaaacatat$

5 acatat$

6 at$

7 atat$

8 caaacatat$

9 catat$

10 t$

11 tat$

The binary searches each need O(log n) steps. In each step we need to compare m characters of the text
and the pattern in the ≤ operations. Finally we have to report the j matches. This leads to a running time of
O(m log n + j).

Can we do better?

1012 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

While the binary search continues, L and R are the left and right boundaries of the current search interval.
At the start, L equals 1 and R equals n. Then in each iteration of the binary search a query is made at location
M = d(R + L)/2e of suftab .

We keep track of the longest prefixes of suftab (L) and suftab (R) that match a prefix of p. Let l and r denote
the prefix lengths respectively and let

mlr = min(l, r) .

Then we can use the value mlr to accelerate the lexicographical comparison of p and the suffix suftab [M].
Since suftab is ordered, it is clear that all suffixes between L and R share the same prefix. Hence we can start
the first comparison at position mlr + 1.

In practice this trick already brings the running time to O(m + log n + j), however one can construct an
example that still needs time O(m log n + j).

We call an examination of a character of P redundant if that character has been examined before. The goal
is to limit the number of redundant character comparisons to O(1) per iteration of the binary search.

The use of mlr alone does not suffice: In the case that l , r, all characters in P from mlr + 1 to max(l, r)
will have already been examined. Thus all comparisons to these characters are redundant. We need a way to
begin the comparisons at the maximum of l and r.

To do this we introduce the following definition.

Definition 1. lcp (i, j) is the length of the longest common prefix of the suffixes specified in positions i and j of
suftab .

For example for S = aabaacatat the lcp (1, 2) is the length of the longest common prefix of aabaacata and
aacata which is 2.

With the help of the lcp information, we can achieve our goal of one redundant character comparison per
iteration of the search. For now assume that we know lcp (i, j),∀i, j.

How do we use the lcp information? In the case of l = r we compare P to suftab [M] as before starting from
position mlr + 1, since in this case the minimum of l and r is also the maximum of the two and no redundant
character comparisons are made.

If l , r, there are three cases. We assume w.l.o.g. l > r.

Case 1: lcp (L,M) > l.
Then the common prefix of the suffixes S suftab [L] and S suftab [M] is longer than the common prefix of P and
S suftab [L].

Therefore, P agrees with the suffix S suftab [M] up through character l. Or to put it differently, characters l + 1
of S suftab [L] and S suftab [M] are identical and lexically less than character l + 1 of P.

Hence any possible starting position must start to the right of M in suftab . So in this case no examination
of P is needed. L is set to M and l and r remain unchanged.

Case 2: lcp (L,M) < l.
Then the common prefix of suffix suftab [L] and suftab [M] is smaller than the common prefix of suftab [L] and
P.

Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00 1013

Therefore P agrees with suftab [M] up through character lcp (L,M). The lcp (L,M) + 1 characters of P and
and suftab [L] are identical and lexically less than the character lcp (L,M) + 1 of suftab [M].

Hence any possible starting position must start left of M in suftab . So in this case again no examination of
P is needed. R is set to M, r is changed to lcp (L,M), and l remains unchanged.

Case 3: lcp (L,M) = l.
Then P agrees with suftab [M] up to character l. The algorithm then lexically compares P to suftab [M] starting
from position l+1. In the usual manner the outcome of the compare determines which of L and R change along
with the corresponding change of l and r.

Illustration of the three cases

case 1) case 2) case 3)

P = a b c d e m n P = a b c d e m n P = a b c d e m n

lcp(L,M) lcp(L,M) lcp(L,M)

l l l

L -> a b c d e f g.... L -> a b c d e f g... L -> a b c d e f g....

M -> a b c d e f g.... M -> a b c d g g.... M -> a b c d e g....

R -> a b c w x y z.... R -> a b c w x y z... R -> a b c w x y z....

r r r

Then the following theorem holds:

Theorem 2. Using the lcp values, the search algorithm does at most O(m + log n) comparisons and runs in that time.

Proof: Exercise. Use the fact that neither l nor r decrease in the binary search, and find a bound for the
number of redundant comparisons per iteration of the binary search.

1.20 Computing the lcp values

We now know how to search fast in a suffix array under the assumption, that we know the lcp values for all
pairs i, j.

But how do we compute the lcp values? And which ones? Computing them all would require too much
time and, worse, quadratic space!

We will now first dicuss, which lcp values we really need. There exists a simple O(n) algorithm to compute
the lcp values given the suffix array suftab which we will not adress.

We first observe that indeed we only need the lcp values of L and R that we encounter in the binary search
for LP and RP. However, the set of pairs (i, j) which can be considered is contained in a binary search tree which
does not depend on P, and has linear size.

Observation 3. Only O(n) many lcp values are needed for the lcp based search in a suffix array.

Example: n = 9

1014 Fast String Matching, by Klau, Reinert, Gröpl, October 4, 2013, 13:00

(1,9)

(1,5) (5,9)

(1,3) (3,5) (5,7) (7,9)

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9)

We get those values in a two step procedure:

1. Compute the lcp values for pairs of suffixes adjacent in suftab using an array height of size n.

2. For the fixed binary search tree used in the search for LP and RP compute the lcp values for its internal
nodes using the array height . (exercise *)

(*) The value at an internal node is the minimum of its successors (why?)

Hence the essential thing to do is to compute the array height , i.e. the lcp values of adjacent suffixes in
suftab .

1.21 Final remarks

• This was just an introduction.

• We did not cover:

– linear-time construction of suffix trees (e. g., Ukkonen’s algorithm)

– direct O(n log n) time construction of suffix arrays (Manber & Myers)

– the linear time construction algorithm for the height array.

– . . .

