Chapter 1
Introduction

1.1 Biological Motivations

A vast diversity of organisms exist on Earth, but they are amazingly similar. Every
organism is made up of cells and depends on two types of molecules: DNA and
proteins. DNA in a cell transmits itself from generation to generation and holds
genetic instructions that guide the synthesis of proteins and other molecules. Pro-
teins perform biochemical reactions, pass signals among cells, and form the body’s
components. DNA is a sequence of 4 nucleotides, whereas proteins are made of 20
amino acids arranged in a linear chain.

Due to the linear structure of DNA and protein, sequence comparison has been
one of the common practices in molecular biology since the first protein sequence
was read in the 1950s. There are dozens of reasons for this. Among these reasons
are the following: sequence comparisons allow identification of genes and other
conserved sequence patterns; they can be used to establish functional, structural,
and evolutionary relationship among proteins; and they provide a reliable method
for inferring the biological functions of newly sequenced genes.

A striking fact revealed by the abundance of biological sequence data is that a
large proportion of genes in an organism have significant similarity with ones in
other organisms that diverged hundreds of millions of years ago. Two mammals
have as many as 99% genes in common. Humans and fruit flies even have at least
50% genes in common.

On the other hand, different organisms do differ to some degree. This strongly
suggests that the genomes of existing species are shaped by evolution. Accordingly,
comparing related genomes provides the best hope for understanding the language
of DNA and for unraveling the evolutionary relationship among different species.

Two sequences from different genomes are homologous if they evolved from a
common ancestor. We are interested in homologies because they usually have con-
served structures and functions. Because species diverged at different time points,
homologous proteins are expected to be more similar in closely related organisms
than in remotely related ones.

2 1 Introduction

When a new protein is found, scientists usually have little idea about its function.
Direct experimentation on a protein of interest is often costly and time-consuming.
As a result, one common approach to inferring the protein’s function is to find by
similarity search its homologies that have been studied and are stored in database.
One remarkable finding made through sequence comparison is about how cancer is
caused. In 1983, a paper appearing in Science reported a 28-amino-acid sequence
for platelet derived growth factors, a normal protein whose function is to stimu-
late cell growth. By searching against a small protein database created by himself,
Doolittle found that the sequence is almost identical to a sequence of v-sis, an onco-
gene causing cancer in woolly monkeys. This finding changed the way oncogenesis
had been seen and understood. Today, it is generally accepted that cancer might be
caused by a normal growth gene if it is switched on at the wrong time.

Today, powerful sequence comparison methods, together with comprehensive bi-
ological databases, have changed the practice of molecular biology and genomics.
In the words of Gilbert, Nobel prize winner and co-inventor of practical DNA se-
quencing technology,

The new paradigm now emerging, is that all the ‘genes’ will be known (in the sense of
being resident in databases available electronically), and that the starting point of biological
investigation will be theoretical. (Gilbert, 1991, [76])

1.2 Alignment: A Model for Sequence Comparison

1.2.1 Definition

Alignment is a model used by biologists for bringing up sequence similarity. Let X
be an alphabet, and let X = xjx5...x,, and ¥ = y1y;2 ...y, be two sequences over X.
We extend X by adding a special symbol ‘-’, which denotes space. An alignment of
sequences X and Y is a two-row matrix A with entries in X U {—} such that

1. The first (second) row contains the letters of X (Y) in order;

2. One or more spaces ‘-’ may appear between two consecutive letters of X in each
row;

3. Each column contains at least one letter of X.

For example, an alignment between a fragment of the yeast glutathione S-transferase
I (GST1) protein sequence and the viral-enhancing factor (VEF) protein sequence
is shown in Figure 1.1.

In an alignment, columns that contain two letters are called matches if the let-
ters are identical and mismatches otherwise. Columns containing a space are called
indels. In order to be accurate, we sometimes call the columns insertions if they
contain a space in the first row and deletions if they contain a space in the second
row. In the alignment of sequences GST1 and VEF given in Figure 1.1, there are 37
matches highlighted by using vertical bars in the central line. Besides, there are 3
insertions and 15 deletions.

1.2 Alignment: A Model for Sequence Comparison 3

GST1 SRAFRLLWLLDHLNLEYEIVPYKRDANFRAPPELKKIHPLGRSPLLEVQDRETGKKKILA

e [[L
VEF SYLFRFRGLGDFMLLELQIVPILNLASVRVGNHHNGPHSYFNTTYLSVEVRDT-—————~

GST1 ESGFIFQYVL-—-QHFDHSHVLMSEDADIADQINYYLFYVEGSLQPPLMIEFILSKVKDS

o [[\ L
VEF SGGVVFSYSRLGNEPMTHEH----HKFEVFKDYTIHLFIQE----PGQRLQOLIVNKTLDT

GST1 GMPFPISYLARKVADKISQAYSSGEVKNQEDEV

| e \ [
VEF ALPNSQONIYARLTATQLVVGEQSIIISDDNDEV

Fig. 1.1 An example of protein sequence alignment.

From a biological point of view, an alignment of two sequences poses a hypothe-
sis on how the sequences evolved from their closest common ancestor. An alignment
accounts for the following three mutational events:

e Substitution (also called point mutation) - A nucleotide is replaced by another.
e Insertion - One or several nucleotides are inserted at a position in a sequence.
e Deletion - One of several nucleotides are deleted from a sequence.

In an alignment, a mismatch represents a hypothetical substitution event, and an
indel () or () represents that a is added or deleted in an insertion or deletion
event.

We often say an alignment is gapped or ungapped to emphasize whether indels
are allowed or not in the alignment.

1.2.2 Alignment Graph

There are many ways of aligning two sequences. By using theoretic-graph concepts,
however, we can obtain a compact representation of these alignments.

Consider two sequences of length m and n. The alignment graph of these two
sequences is a direct graph G. The vertices of G are lattice points (i,), 0 <i <
mand 0 < j<ninthe (m+1)x (n+ 1) grid, and there is an edge from vertex
(i,) to another (i, ") if and only if 0 < i —i<1and 0 < j/ — j < 1. Figure 1.2
gives the alignment graph for sequences ATACTGG and GTCCGTG. As shown in
Figure 1.2, there are vertical, horizontal, and diagonal edges. In a directed graph,
a sink is a vertex that has every incident edge directed toward it, and a source is a
vertex that has every incident edge directed outwards. In the alignment graph, (0,0)
is the unique source and (m,n) is the unique sink.

The alignment graph is very useful for understanding and developing alignment
algorithms as we shall see in Chapter 3. One reason for this is that all possible
alignments correspond one-to-one to the directed paths from the source (0,0) to the
sink (m,n). Hence, it gives a compact representation of all possible alignments of

4 1 Introduction

7
5
2

7

7

7

0
-0

o
Sk
v
|

%

—

LN
SN
N 3 5y

1 2 3 4 5 6

Fig. 1.2 Alignment graph for sequences ATACTGG and GTCCGTG.

- OO
o
oo aioaNod
ol
Y

the sequences. To see the correspondence, we consider the alignment graph given in
Figure 1.2 in what follows.

Let X = ATACTGG be the first sequence and ¥ = GTCCGTG be the second se-
quence. The highlighted path in the alignment graph is

s—(1,0) — (1,1) — (2,2) — (3,3) — (4,4) — (4,5) — (5,6) — (6,6) — (7,7),

where s is the source (0,0). Let x; (y;) denote the ith letter of the first (second) se-
quence. Walking along the path, we write down a column (;‘;) (’ﬁ), and (}_]) if we
see a diagonal, vertical, and horizontal edge entering vertex (i, j), respectively. After

reaching the sink (7,7), we obtain the following nine-column alignment of X and Y:

X A-TAC-TGG
Y -GTCCGT-G

where the ith column corresponds to the ith edge in the path.

On the other hand, given a k-column alignment of X and Y, we let u; (and v;) be
the number of letters in the first i columns in the row of X (and Y) fori=0,1,... k.
Trivially, ugp = vo = 0 and u; = m and v; = n. For any i, we also have that

1.2 Alignment: A Model for Sequence Comparison 5
0<uiy1—u; <1

and
0<viy1—vi <L

This fact implies that there is an edge from (;,v;) to (#;41,vi+1). Thus,

(uo,vo) — (u1,vi) — ... — (U, vg)

is a path from the source to the sink. For example, from alignment

X ATACTG-G
Y GTCC-GTG,

we obtain the following path
(0,0) = (1,1) = (2,2) = (3,3) — (4,4) — (5,4) — (6,5) — (6,6) — (7,7).

In summary, an alignment of two sequences corresponds uniquely to a path from
the source to the sink in the alignment graph of these two sequences. In this cor-
respondence, match/mismatches, deletions, and insertions correspond to diagonal,
vertical, and horizontal edges, respectively.

The aim of alignment is to find the best one of all the possible alignments of
two sequences. Hence, a natural question to ask is: How many possible alignments
are there for two sequences of length m and n? This is equivalent to asking how
many different paths there are from the source node (0,0) to the sink node (m,n)
in an alignment graph. For a simple problem of aligning x;x; and yj, all 5 possible
alignments are shown below:

X1 X2 X1 X2 - X1 X2 X1 X2 - X1 - X2

yir - - yr - - | - Y-

We denote the number of possible alignments by a(m,n). In an alignment graph,
the paths from (0,0) to a vertex (i, ;) correspond to possible alignments of two
sequences of length i and j. Hence, a(i, j) is equal to the number of paths from (0,0)
to the vertex (i, j). Because every path from the source (0,0) to the sink (m,7n) must
go through exactly one of the vertices (m — 1,n), (m,n—1),and (n—1,m—1), we
obtain

a(m,n) =a(m—1,n)+a(mn—1)+an—1,m—1). (L.1)

Noting that there is only one way to align the empty sequence to a non-empty se-
quence, we also have that

a(0,k) = a(k,0) =1 (1.2)

for any k > 0.

6 1 Introduction

Table 1.1 The number of possible alignments of two sequences of length m and n for n,m < 8.

o1 2 3 4 5 6 7 8
11 1 1 1 1 1 1 1
35 7 9 11 13 15 17

13 25 41 61 85 113 145

63 129 231 371 575 833

321 681 1,280 2,241 3,649
1,683 3,653 7,183 13,073
8,989 19,825 40,081

48,639 108,545

265,729

OIANNPBWN = O

Recurrence relation (1.1) and basis conditions (1.2) enable us to calculate a(m,n)
efficiently. Table 1.1 gives the values of a(m,n) for any m,n < 8. As we see from the
table, the number a(m,n) grows quite fast with m and n. For n = m = 8, this number
is already 265,729! As the matter of fact, we have that (see the gray box below)

a(m,n) = nfn C;) <H+Z_k). (1.3)

k=max{n,m}

In particular, when m = n, the sum of the last two terms of the right side of (1.3) is

) ()-

Applying Stirling’s approximation
X! & V22

we obtain a(100,100) > 22 ~ 10, an astronomically large number! Clearly, this
shows that it is definitely not feasible to examine all possible alignments and that
we need an efficient method for sequence alignment.

Proof of formula (1.3)

We first consider the arrangements of letters in the first row and then those
in the second row of a k-column alignment. Assume there are m letters in the
first row. There are (YIZ) ways to arrange the letters in the first row. Fix such an
arbitrary arrangement. By the definition of alignment, there are k — n spaces
in the second row, and these spaces must be placed below the letters in the
first row. Thus, there are (,",) = (,,,»_,) arrangements for the second row.
By the multiplication principle, there are

1.3 Scoring Alignment 7

=) s

possible alignments of k columns.

Each alignment of the sequences has at least max{m,n} and at most m+n
columns. Summing ay (m,n) over all k from max{m,n} to m+n yields formula
(1.3).

1.3 Scoring Alignment

Our goal is to find, given two DNA or protein sequences, the best alignment of
them. For this purpose, we need a rule to tell us the goodness of each possible
alignment. The earliest similarity measure was based on percent identical residues,
that is, simply to count matches in an alignment. In the old days, this simple rule
worked because it was rare to see the low percent identity of two proteins with
similar functions like homeodomain proteins. Nowadays, a more general rule has to
be used to score an alignment.

First, we have a score s(a,b) for matching a with b for any pair of letters a
and b. Usually, s(a,a) > 0, and s(a,b) < 0 for a # b. Assume there are k letters
ai,as,...,a. All these possible scores are specified by a matrix (s(a;,b;)), called a
scoring matrix. For example, when DNA sequences are aligned, the following scor-
ing matrix may be used:

Al 2 -1 -1 -1
Gl-1 2 -1 -1
Cl-1 -1 2 -
T|[-1 -1 -1 2
A G C T

This scoring matrix indicates that all matches score 2 whereas mismatches are
penalized by 1. Assume we align two sequences. If one sequence has letter a and
another has b in a position, it is unknown whether a had been replaced by b or
the other way around in evolutionary history. Thus, scoring matrices are usually
symmetric like the one given above. In this book, we only write down the lower
triangular part of a scoring matrix if it is symmetric.

Scoring matrices for DNA sequence alignment are usually simple. All different
matches score the same, and so do all mismatches. For protein sequences, however,
scoring matrices are quite complicated. Frequently used scoring matrices are de-
veloped using statistical analysis of real sequence data. They reflect the frequency
of an amino acid replacing another in biologically related protein sequences. As a
result, a scoring matrix for protein sequence alignment is usually called a substitu-

8 1 Introduction

tion matrix. We will discuss in detail how substitution matrices are constructed and
selected for sequence alignment in Chapter 8.

Second, we consider indels. In an alignment, indels and mismatches are intro-
duced to bring up matches that appear later. Thus, indels are penalized like mis-
matches. The most straightforward method is to penalize each indel by some con-
stant 8. However, two or more nucleotides are frequently inserted or deleted together
as a result of biochemical processes such as replication slippage. Hence, penalizing
a gap of length k by —k9 is too cruel. A gap in an alignment is defined as a sequence
of spaces locating between two letters in one row. A popular gap penalty model,
called affine gap penalty, scores a gap of length k as

—(o+kxe),

where o0 > 0 is considered as the penalty for opening a gap and e > 0 is the penalty
for extending a gap by one letter. The opening gap penalty o is usually big whereas
the gap extension penalty e is small. Note that simply multiples of the number of
indels is a special case of the affine gap penalty model in which o = 0.

A scoring matrix and a gap penalty model form a scoring scheme or a scoring
system. With a scoring scheme in hand, the score of an alignment is calculated as the
sum of individual scores, one for each aligned pair of letters, and scores for gaps.
Consider the comparison of two DNA sequences with the simple scoring matrix
given above, which assigns 2 to each match and -1 to each mismatch. If we simply
penalize each indel by -1.5, the score for the alignment on page 4 is

—15-15+2-1+2-154+2-1542=3.

As we will see in Section 8.3, in any scoring matrix, the substitution score s(a,b) is
essentially a logarithm of the ratio of the probability that we expect to see a and b
aligned in biologically related sequences to the probability that they are aligned in
unrelated random sequences. Hence, being the sum of individual log-odds scores,
the score of a ungapped alignment reflects the likelihood that this alignment was
generated as a consequence of sequence evolution.

1.4 Computing Sequence Alignment

In this section, we briefly define the global and local alignment problems and then
relate the alignment problem to some interesting algorithmic problems in computer
science, mathematics, and information theory.

1.4 Computing Sequence Alignment 9

1.4.1 Global Alignment Problem

With a scoring system, we associate a score to each possible alignment. The optimal
alignments are those with the maximum score. The global alignment problem (or
simply alignment problem) is stated as

Global Alignment Problem

Input: Two sequences x and y and a scoring scheme.
Solution: An optimal alignment of x and y (as defined by the scoring
scheme).

Because there is a huge number of possible alignments for two sequences, it
is not feasible to find the optimal one by examining all alignments one by one.
Fortunately, there is a very efficient algorithm for this problem. This algorithm is
now called the Needleman-Wunsch algorithm. The so-called dynamic programming
idea behind this algorithm is so simple that such an algorithm has been discovered
and rediscovered in different form many times. The Needleman-Wunsch algorithm
and its generalizations are extensively discussed in Chapter 3.

The sequence alignment problem seems quite simple. But, it is rather general as
being closely related to several interesting problems in mathematics, computer sci-
ence, and information theory. Here we just name two such examples. The longest
common subsequence problem is, given two sequences, to find a longest sequence
whose letters appear in each sequence in order, but not necessarily in consecutive
positions. This problem had been interested in mathematics long before Needleman
and Wunsch discovered their algorithm for aligning DNA sequences. Consider a
special scoring system .7 that assigns 1 to each match, —eo to each mismatch, and
0 to each indel. It is easy to verify that the optimal alignment of two sequences
found using . must not contain mismatches. As a result, all the matches in the
alignment give a longest common subsequence. Hence, the longest common subse-
quence problem is identical to the sequence alignment problem under the particular
scoring system ..

There are two ways of measuring the similarity of two sequences: similarity
scores and distance scores. In distance scores, the smaller the score, the more
closely related are the two sequences. Hamming distance allows one only to com-
pare sequences of the same length. In 1966, Levenshtein introduced edit distance for
comparison of sequences of different lengths. It is defined as the minimum number
of editing operations that are needed to transform one sequence into another, where
the editing operations include insertion of a letter, deletion of a letter, and substitu-
tion of a letter for another. It is left to the reader to find out that calculating the edit
distance between two strings is equivalent to the sequence alignment problem under
a particular scoring system.

10 1 Introduction

1.4.2 Local Alignment Problem

Proteins often have multiple functions. Two proteins that have a common function
may be similar only in functional domain regions. For example, homeodomain pro-
teins, which play important roles in developmental processes, are present in a vari-
ety of species. These proteins in different species are only similar in one domain of
about 60 amino acids long, encoded by homeobox genes. Obviously, aligning the
entire sequences will not be useful for identification of the similarity among home-
odomain proteins. This raises the problem of finding, given two sequences, which
respective segments have the best alignments. Such an alignment between some
segments of each sequence is called local alignment of the given sequences. The
problem of aligning locally sequences is formally stated as

Local Alignment Problem

Input: Two sequences x = xjx3...x, and y = y;y»...y, and a scoring
scheme.

Solution: An alignment of fragments x;x;; 1 ...x; and ygyx+1 ...ys, that has
the largest score among all alignments of all pairs of fragments of x and y.

A straightforward method for this problem is to find the optimal alignment for
every pair of fragments of x and y using the Needleman-Wunsch algorithm. The se-
quence x has (';) fragments and y has (g) ones. Thus, this method is rather inefficient
because its running time will increase by roughly m?>n* times. Instead, applying di-
rectly the dynamic programming idea leads to an algorithm that is as efficient as
the Needleman-Wunsch algorithm although it is a bit more tricky this time. This
dynamic programming algorithm, called Smith-Waterman algorithm, is covered in
Section 3.4.

Homology search is one important application of the local alignment problem. In
this case, we have a query sequence, say, a newly sequenced gene, and a database.
We wish to search the entire database to find those sequences that match locally (to
a significant degree) with the query. Because databases have easily millions of se-
quences, Smith-Waterman algorithm, having quadratic-time complexity, is too de-
manding in computational time for homology search. Accordingly, fast heuristic
search tools have been developed in the past two decades. Chapter 4 will present
several frequently used homology search tools.

Filtration is a useful idea for designing fast homology search programs. A
filtration-based program first identifies short exact matches specified by a fixed pat-
tern (called seed) of two sequences and then extends each match to both sides for
local alignment. A clever technique in speeding up homology search process is to
substitute optimized spaced seed for consecutive seed as exemplified in Pattern-
Hunter. Theoretic treatment of spaced seed technique is studied in Chapter 6.

1.5 Multiple Alignment 11

1.5 Multiple Alignment

An alignment of two sequences is called an pairwise alignment. The above def-
inition of pairwise alignment can be straightforwardly generalized to the case of
multiple sequences. Formally, a multiple alignment of k sequences X1,Xp,...,Xx
over an alphabet X is specified by a k x n matrix M. Each entry of M is a letter of
X or a space ‘-’, and each row j contains the letters of sequence X; in order, which
may be interspersed with ‘-’s. We request that each column of the matrix contains
at least one letter of X. Below is a multiple alignment of partial sequences of five
globin proteins:

Hb_a LSPADKTNVUAAWGKVGA-——--HAGEYGAE
Hb_b LTPEEKSAVTALWGKV—————— NVDEVGGE
Mb_SW LSEGEWQLVLHVWAKVEA—-—-—-DVAGHGQD
LebHB LTESQAALVKSSWEEFNA—--——-NIPKHTHR
BacHB QTINIIKATVPVLKEHG—————- V-TITTT

Multiple alignment is often used to assess sequence conservation of three or more
closely related proteins. Biologically similar proteins may have very diverged se-
quences and hence may not exhibit a strong sequence similarity. Comparing many
sequences at the same time often finds weak similarities that are invisible in pairwise
sequence comparison.

Several issues arise in aligning multiple sequences. First, it is not obvious how
to score a multiple alignment. Intuitively, high scores should correspond to highly
conserved sequences. One popular scoring method is the Sum-of-Pairs (SP) score.
Any alignment A of k sequences xy,x2, ..., X gives a pairwise alignment A (x;,x;) of
x; and x; when restricted to these two sequences. We use s(i, j) to denote the score
of A(x;,x;j). The SP score of the alignment A is defined as

SPA) =Y s(i,)).

1<i<j<k

Note that the SP score is identical to the score of a pairwise alignment when there
are only two sequences. The details of the SP score and other scoring methods can
be found in Section 5.2

Second, aligning multiple sequences is extremely time-consuming. The SP score
of a multiple alignment is a generalization of a pairwise alignment score. Simi-
larly, the dynamic programming algorithm can generalize to multiple sequences in
a straightforward manner. However, such an algorithm will use roughly (2m)* arith-
metic operations for aligning k sequences of length m. For small %, it works well.
The running time is simply too much when k is large, say 30. Several heuristic
approaches have been proposed for speeding up multiple alignment process (see
Section 5.4).

12 1 Introduction

1.6 What Alignments Are Meaningful?

Although homology and similarity are often interchanged in popular usage, they
are completely different. Homology is qualitative, which means having a common
ancestor. On the other hand, similarity refers to the degree of the match between
two sequences. Similarity is an expected consequence of homology, but not a nec-
essary one. It may occur due to chance or due to an evolutionary process whereby
organisms independently evolve similar traits such as the wings of insect and bats.

Assume we find a good match for a newly sequenced gene through database
search. Does this match reflect a homology? Nobody knows what really happened
over evolutionary time. When we say that a sequence is homologous to another,
we are stating what we believe. No matter how high is the alignment score, we
can never be 100% sure. Hence, a central question in sequence comparison is how
frequently an alignment score is expected to occur by chance. This question has been
extensively investigated through the study of the alignments of random sequences.
The Karlin-Altschul alignment statistics covered in Chapter 7 lay the foundation for
answering this important question.

To approach theoretically the question, we need to model biological sequences.
The simplest model for random sequences assumes that the letters in all positions
are generated independently, with probability distribution

P1,P2y---5Pr

for all letters aj,an,...a, in the alphabet, where r is 4 for DNA sequences and 20
for protein sequences. We call it the Bernoulli sequence model.

The theoretical studies covered in Chapters 6 and 7 are based on this simple
model. However, most of the results generalize to the high-order Markov chain
model in a straightforward manner. In the kth-order Markov chain sequence model,
the probability that a letter is present at any position j depends on the letters in the
preceding k sites: i —k,i—k+1,...,j+ 1. The third-order Markov chain model is
often used to model gene coding sequences.

1.7 Overview of the Book

This book is structured into two parts. The first part examines alignment algorithms
and techniques and is composed of four chapters, and the second part focuses on the
theoretical issues of sequence comparison and has three chapters. The individual
chapters cover topics as follows.

2 Basic algorithmic techniques. Starting with basic definitions and notions, we
introduce the greedy, divide-and-conquer, and dynamic programming approaches
that are frequently used in designing algorithms in bioinformatics.

1.8 Bibliographic Notes and Further Reading 13

3 Pairwise sequence alignment. We start with the dot matrix representation of
pairwise alignment. We introduce the Needleman-Wunsch and Smith-Waterman al-
gorithms. We further describe several variants of these two classic algorithms for
coping with special cases of scoring schemes, as well as space-saving strategies for
aligning long sequences. We also cover constrained sequence alignment and subop-
timal alignment.

4 Homology search tools. After showing how filtration technique speeds up ho-
mology search process, we describe in detail four frequently used homology search
tools: FASTA, BLAST, BLAT, and PatternHunter.

5 Multiple sequence alignment. Multiple sequence alignment finds applications
in prediction of protein functions and phylogenetic studies. After introducing the
sum-of-pairs score, we generalize the dynamic programming idea to aligning multi-
ple sequences and describe how progressive approach speeds up the multiple align-
ment process.

6 Anatomy of spaced seeds. We focus on the theoretic analysis of spaced seed
technique. Starting with a brief introduction to the spaced seed technique, we first
discuss the trade-off between sensitivity and specificity of seeding-based methods
for homology search. We then present a framework for the analysis of the hit prob-
ability of spaced seeds and address seed selection issues.

7 Local alignment statistics. We focus on the Karlin-Altschul statistics of local
alignment scores. We show that optimal segment scores are accurately described by
an extreme value distribution in asymptotic limit, and introduce the Karlin-Altschul
sum statistic. In the case of gapped local alignment, we describe how the statistical
parameters for the score distribution are estimated through empirical approach, and
discuss the edge-effect and multiple testing issues. Finally, we illustrate how the
Expect value and P-value are calculated in BLAST using two BLAST printouts.

8 Scoring matrices. We start with the frequently used PAM and BLOSUM ma-
trices. We show that scoring matrices for aligning protein sequences take essentially
a log-odds form and there is one-to-one correspondence between so-called valid
scoring matrices and the sets of target and background frequencies. We also discuss
how scoring matrices are selected and adjusted for comparing sequences of biased
letter composition. Finally, we discuss gap score schemes.

1.8 Bibliographic Notes and Further Reading

After nearly 50 years of research, there are hundreds of available tools and thousands
of research papers in sequence alignment. We will not attempt to cover all (or even
a large portion) of this research in this text. Rather, we will be content to provide

14 1 Introduction

pointers to some of the most relevant and useful references on the topics not covered
in this text.

For the earlier phase of sequence comparison, we refer the reader to the paper
of Sankoff [174]. For information on probabilistic and statistical approach to se-
quence alignment, we refer the reader to the books by Durbin et al. [61], Ewens
and Grant [64], and Waterman [197]. For information on sequence comparisons in
DNA sequence assembly, we refer the reader to the survey paper of Myers [149]
and the books of Gusfield [85] and Deonier, Tavaré and Waterman [58]. For infor-
mation on future directions and challenging problems in comparison of genomic
DNA sequences, we refer the reader to the review papers by Batzoglou [23] and
Miller [138].

