Computing functions

- Unary encoding of natural numbers: $i \in \mathbb{N} \mapsto \underbrace{|| \dots |}_{i \text{ times}} = |^i$ (binary encoding would also be possible)
- *M* computes $f: \mathbb{N}^k \to \mathbb{N}$ with $f(i_1, ..., i_k) = m$:
 - Start: $|^{i_1} 0|^{i_2} 0 \dots |^{i_k}$
 - End: |^m
- f partially recursive:

$$i_1, \dots, i_k \longrightarrow \boxed{\mathsf{M}} \longrightarrow \left\{ egin{array}{l} \mathsf{halts} \; \mathsf{with} \; f(i_1, \dots, i_k) = m, \\ \mathsf{does} \; \mathsf{not} \; \mathsf{halt}, \; \mathsf{i.e.}, f \; \mathsf{undefined}. \end{array} \right.$$

• f recursive:

$$i_1, \dots, i_k \longrightarrow \boxed{\mathbf{M}} \longrightarrow \text{halts with } f(i_1, \dots, i_k) = m.$$

Turing machines codes

May assume

$$M = (Q, \{0, 1\}, \{0, 1, \#\}, \delta, q_1, \#, \{q_2\})$$

Unary encoding

$$0 \mapsto 0, 1 \mapsto 00, \# \mapsto 000, L \mapsto 0, R \mapsto 00$$

• $\delta(q_i, X) = (q_j, Y, R)$ encoded by

$$0^{i}1\underbrace{0...0}_{X}10^{j}1\underbrace{0...0}_{Y}1\underbrace{0...0}_{R}$$

δ encoded by

• Encoding of Turing machine M denoted by $\langle M \rangle$.

Numbering of Turing machines

- Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.
- Lemma. There exists a Turing machine *Gen* that generates the binary encodings of all Turing machines.
- **Proposition.** The language of Turing machine codes is recursive.
- Corollary. There exist a bijection between the set of natural numbers, Turing machine codes and Turing machines.

$$M \longrightarrow \langle M \rangle \longrightarrow \langle M \rangle \longrightarrow$$
 Equality test \longrightarrow number n

Diagonalization

• Let w_i be the *i*-th word in $\{0,1\}^*$ and M_j the *j*-th Turing machine.

• Table T with $t_{ij} = \begin{cases} 1, & \text{if } w_i \in L(M_j) \\ 0, & \text{if } w_i \notin L(M_j) \end{cases}$

- Diagonal language $L_d = \{w_i \in \{0,1\}^* \mid w_i \notin L(M_i)\}.$
- **Theorem.** L_d is not recursively enumerable.
- *Proof:* Suppose $L_d = L(M_k)$, for some $k \in \mathbb{N}$. Then

$$w_k \in L_d \Leftrightarrow w_k \not\in L(M_k)$$
,

contradicting $L_d = L(M_k)$.

Universal language

- $\langle M, w \rangle$: encoding $\langle M \rangle$ of M concatenated with $w \in \{0, 1\}^*$.
- Universal language

$$L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$$

- **Theorem.** L_u is recursively enumerable.
- A Turing machine U accepting L_u is called *universal Turing machine*.
- **Theorem** (Turing 1936). *L_u* is not recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language $L \subseteq \Sigma^*$ the decision problem D_L

Input:
$$w \in \Sigma^*$$
Output: $\left\{ \begin{array}{ll} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \not\in L \end{array} \right.$

and vice versa.

- D_L is decidable (resp. semi-decidable) if L is recursive (resp. recursively enumerable).
- D_L is undecidable if L is not recursive.

Reductions

- A many-one reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ with $w \in L_1 \Leftrightarrow f(w) \in L_2$.
- **Proposition.** If L_1 is many-one reducible to L_2 , then
 - 1. L_1 is decidable if L_2 is decidable.
 - 2. L_2 is undecidable if L_1 is undecidable.

Post's correspondence problem

· Given pairs of words

$$(v_1, w_1), (v_2, w_2), \dots, (v_k, w_k)$$

over an alphabet Σ , does there exist a sequence of integers $i_1, \dots, i_m, m \ge 1$, such that

$$V_{i_1},\ldots,V_{i_m}=W_{i_1},\ldots,W_{i_m}.$$

Example

$$\begin{array}{c|ccccc}
i & v_i & w_i \\
\hline
1 & 1 & 111 \\
2 & 10111 & 10 \\
3 & 10 & 0
\end{array}
\Rightarrow v_2v_1v_1v_3 = w_2w_1w_1w_3 = 1011111110$$

• Theorem (Post 1946). Post's correspondence problem is undecidable.

Hilbert's Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)

Hilbert's tenth problem is undecidable.