Computability and Complexity Theory
 Computability and complexity

- Computability theory
- What problems can be solved on a computer ?
- What is a computable function?
- Decidable vs. undecidable problems
- Complexity theory
- How much time and memory is needed to solve a problem ?
- Tractable vs. intractable problems

What is a computable function?

- Non-trivial question \rightsquigarrow various formalizations, e.g.
- General recursive functions

Gödel/Herbrand/Kleene 1936

- λ-calculus

Church 1936

- μ-recursive functions

Gödel/Kleene 1936

- Turing machines

Turing 1936

- Post systems

Post 1943

- Markov algorithms

Markov 1951

- Unlimited register machines

Shepherdson-Sturgis 1963

- All these approaches have turned out to be equivalent.

Church's thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine

Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.

Formal definition

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \#, F\right)$
- Q is the finite set of states.
- Γ is the finite alphabet of allowable tape symbols.
- $\# \in \Gamma$ is the blank.
- $\Sigma \subset \Gamma \backslash\{\#\}$ is the set of input symbols.
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the next move function (possibly undefined for some arguments)
- $q_{0} \in Q$ is the start state.
- $F \subseteq Q$ is the set of final (accepting) states.

Recognizing languages

- Instantaneous description: $\alpha_{/} q \alpha_{r}$, where
- q is the current state,
$-\alpha_{/} \alpha_{r} \in \Gamma^{*}$ is the string on the tape up to the rightmost nonblank symbol,
- the head is scanning the leftmost symbol of α_{r}.
- Move: $\alpha_{/} q \alpha_{r} \vdash \alpha_{/}^{\prime} q^{\prime} \alpha_{r}^{\prime}$, by one step of the machine.
- Language accepted

$$
L(M)=\left\{w \in \Sigma^{*} \mid q_{0} w \vdash^{*} \alpha_{l} q \alpha_{r}, \text { for some } q \in F \text { and } \alpha_{l}, \alpha_{r} \in \Gamma^{*}\right\}
$$

- M may not halt, if w is not accepted.

Example

- Turing machine

$$
M=\left(\left\{q_{0}, \ldots, q_{4}\right\},\{0,1\},\{0,1, X, Y, \#\}, \delta, q_{0}, \#,\left\{q_{4}\right\}\right)
$$

accepting the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

δ	0	1	X	Y	$\#$
q_{0}	$\left(q_{1}, X, R\right)$	-	-	$\left(q_{3}, Y, R\right)$	-
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, Y, L\right)$	-	$\left(q_{1}, Y, R\right)$	-
q_{2}	$\left(q_{2}, 0, L\right)$	-	$\left(q_{0}, X, R\right)$	$\left(q_{2}, Y, L\right)$	-
q_{3}	-	-	-	$\left(q_{3}, Y, R\right)$	$\left(q_{4}, \#, R\right)$
q_{4}	-	-	-	-	-

- Example computation

$q_{0} 0011$	\vdash	$X q_{1} 011$	\vdash	$X 0 q_{1} 11$	\vdash	$X q_{2} 0 Y 1$	\vdash
$q_{2} X 0 Y 1$	\vdash	$X q_{0} 0 Y 1$	\vdash	$X X q_{1} Y 1$	\vdash	$X X Y q_{1} 1$	\vdash
$X X q_{2} Y Y$	\vdash	$X q_{2} X Y Y$	\vdash	$X X q_{0} Y Y$	\vdash	$X X Y q_{3} Y$	\vdash
$X X Y Y q_{3}$	\vdash	$X X Y Y \# q_{4}$					

- A language $L \subseteq \Sigma^{*}$ is recursively enumerable if $L=L(M)$, for some Turing machine M.

$$
w \longrightarrow \begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L \\ M \text { does not halt, } & \text { if } w \notin L\end{cases}
$$

- A language $L \subseteq \Sigma^{*}$ is recursive if $L=L(M)$ for some Turing machine M that halts on all inputs $w \in \Sigma^{*}$.

$$
w \longrightarrow \begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L\end{cases}
$$

- Lemma. L is recursive iff both L and $\bar{L}=\Sigma^{*} \backslash L$ are recursively enumerable.

Enumerating languages

- An enumerator is a Turing machine M with extra output tape T, where symbols, once written, are never changed.
- M writes to T words from Σ^{*}, separated by $\$$.
- Let $G(M)=\left\{w \in \Sigma^{*} \mid w\right.$ is written to $\left.T\right\}$.

Some results

- Lemma. For any finite alphabet Σ, there exists a Turing machine that generates the words $w \in \Sigma^{*}$ in canonical ordering (i.e., $w \prec w^{\prime} \Leftrightarrow|w|<|w|$ or $|w|=|w|$ and $w \prec_{\text {lex }} w^{\prime}$).
- Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding). Proof: Use the ordering $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2), \ldots$
- Proposition. L is recursively enumerable iff $L=G(M)$, for some Turing machine M.

