
Discrete Math for Bioinformatics WS 10/11, by A. Bockmayr/K. Reinert, 7. Februar 2011, 18:15 7001

Computability and Complexity Theory
Computability and complexity

• Computability theory

– What problems can be solved on a computer ?

– What is a computable function ?

– Decidable vs. undecidable problems

• Complexity theory

– How much time and memory is needed to solve a problem ?

– Tractable vs. intractable problems

What is a computable function ?

• Non-trivial question various formalizations, e.g.

– General recursive functions Gödel/Herbrand/Kleene 1936

– λ-calculus Church 1936

– µ-recursive functions Gödel/Kleene 1936

– Turing machines Turing 1936

– Post systems Post 1943

– Markov algorithms Markov 1951

– Unlimited register machines Shepherdson-Sturgis 1963

. . .

• All these approaches have turned out to be equivalent.

Church’s thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine
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Depending on the symbol scanned and the state of the control, in each step the machine

• changes state,

• prints a symbol on the cell scanned, replacing what is written there,

• moves the head left or right one cell.
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Formal definition

• M = (Q,Σ,Γ,δ,q0,#,F )

• Q is the finite set of states.

• Γ is the finite alphabet of allowable tape symbols.

• # ∈ Γ is the blank.

• Σ⊂ Γ\{#} is the set of input symbols.

• δ : Q×Γ→ Q×Γ×{L,R} is the next move function (possibly undefined for some arguments)

• q0 ∈ Q is the start state.

• F ⊆ Q is the set of final (accepting) states.

Recognizing languages

• Instantaneous description: αl q αr , where

– q is the current state,

– αlαr ∈ Γ∗ is the string on the tape up to the rightmost nonblank symbol,

– the head is scanning the leftmost symbol of αr .

• Move: αl q αr ` α′l q′α′r , by one step of the machine.

• Language accepted

L(M) = {w ∈ Σ∗ | q0w `∗ αlqαr , for some q ∈ F and αl ,αr ∈ Γ∗}

• M may not halt, if w is not accepted.

Example

• Turing machine
M = ({q0, ... ,q4},{0,1},{0,1,X ,Y ,#},δ,q0,#,{q4})

accepting the language L = {0n 1n | n ≥ 1}

δ 0 1 X Y #
q0 (q1,X ,R) − − (q3,Y ,R) −
q1 (q1,0,R) (q2,Y ,L) − (q1,Y ,R) −
q2 (q2,0,L) − (q0,X ,R) (q2,Y ,L) −
q3 − − − (q3,Y ,R) (q4,#,R)
q4 − − − − −

• Example computation

q00011 ` Xq1011 ` X0q111 ` Xq20Y1 `
q2X0Y1 ` Xq00Y1 ` XXq1Y1 ` XXYq11 `
XXq2YY ` Xq2XYY ` XXq0YY ` XXYq3Y `
XXYYq3 ` XXYY#q4

Recursive languages
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• A language L⊆ Σ∗ is recursively enumerable if L = L(M), for some Turing machine M.

w −→ M −→


yes, if w ∈ L
no, if w 6∈ L
M does not halt, if w 6∈ L

• A language L⊆ Σ∗ is recursive if L = L(M) for some Turing machine M that halts on all inputs w ∈ Σ∗.

w −→ M −→
{

yes, if w ∈ L
no, if w 6∈ L

• Lemma. L is recursive iff both L and L = Σ∗ \L are recursively enumerable.

Enumerating languages

• An enumerator is a Turing machine M with extra output tape T , where symbols, once written, are never
changed.

• M writes to T words from Σ∗, separated by $.

• Let G(M) = {w ∈ Σ∗ | w is written to T}.

Some results

• Lemma. For any finite alphabet Σ, there exists a Turing machine that generates the words w ∈ Σ∗ in
canonical ordering (i.e., w ≺ w ′⇔ |w |< |w | or |w | = |w | and w ≺lex w ′).

• Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding).

Proof: Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), . . .

• Proposition. L is recursively enumerable iff L = G(M), for some Turing machine M.


