Non-deterministic Turing machines

• Next move relation:

$$\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$$

- L(M) = set of words $w \in \Sigma^*$ for which *there exists* a sequence of moves accepting w.
- **Proposition.** If *L* is accepted by a non-deterministic Turing machine *M*₁, then *L* is accepted by some deterministic machine *M*₂.

Time complexity

- M a (deterministic) Turing machine that halts on all inputs.
- Time complexity function $T_M : \mathbb{N} \to \mathbb{N}$

 $T_{M}(n) = \max\{m \mid \exists w \in \Sigma^{*}, |w| = n \text{ such that the computation} \\ \text{of } M \text{ on } w \text{ takes } m \text{ moves} \}$

(assume numbers are coded in binary format)

- A Turing machine is *polynomial* if there exists a polynomial p(n) with $T_M(n) \le p(n)$, for all $n \in \mathbb{N}$.
- The complexity class P is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- M non-deterministic Turing machine
- The running time of *M* on $w \in \Sigma^*$ is
 - the length of a shortest sequence of moves accepting w if $w \in L(M)$
 - 1, if $w \notin L(M)$
- $T_M(n) = \max\{m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m\}$
- The complexity class NP is the class of languages accepted by a polynomial non-deterministic Turing machine.

Deciding languages in NP

Theorem. If $L \in NP$, then there exists a deterministic Turing machine *M* and a polynomial p(n) such that

- M decides L and
- $T_M(n) \leq 2^{p(n)}$, for all $n \in \mathbb{N}$.

Proof: Suppose *L* is accepted by a non-deterministic machine M_{nd} whose running time is bounded by the polynomial q(n).

To decide whether $w \in L$, the machine M will

- 1. determine the length *n* of *w* and compute q(n).
- 2. simulate all executions of M_{nd} of length at most q(n). If the maximum number of choices of M_{nd} in one step is r, there are at most $r^{q(n)}$ such executions.

3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by $r^{q(n)} \cdot q'(n) = O(2^{p(n)})$, for some polynomial p(n).

An alternative characterization of NP

• **Proposition.** $L \in NP$ if there exists $L' \in P$ and a polynomial p(n) such that for all $w \in \Sigma^*$:

 $w \in L \iff \exists v \in (\Sigma')^* : |v| \le p(|w|) \text{ and } (w, v) \in L'$

- Informally, a problem is in NP if it can be solved non-deterministically in the following way:
 - 1. guess a solution/certificate v of polynomial length,
 - 2. check in polynomial time whether v has the desired property.

Propositional satisfiability

• Satisfiability problem SAT

Instance: A formula F in propositional logic with variables $x_1, ..., x_n$.

Question: Is *F* satisfiable, i.e., does there exist an assignment $I : \{x_1, ..., x_n\} \rightarrow \{0, 1\}$ making the formula true ?

- Trying all possible assignments would require exponential time.
- Guessing an assignment *I* and checking whether it satisfies *F* can be done in (non-deterministic) polynomial time. Thus:
- Proposition. SAT is in NP.

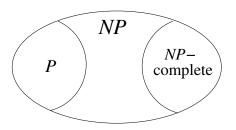
Polynomial reductions

- A *polynomial reduction* of L₁ ⊆ Σ₁^{*} to L₂ ⊆ Σ₂^{*} is a polynomially computable function f : Σ₁^{*} → Σ₂^{*} with w ∈ L₁ ⇔ f(w) ∈ L₂.
- **Proposition.** If L₁ is polynomially reducible to L₂, then
 - 1. $L_1 \in P$ if $L_2 \in P$ and $L_1 \in NP$ if $L_2 \in NP$
 - 2. $L_2 \notin P$ if $L_1 \notin P$ and $L_2 \notin NP$ if $L_1 \notin NP$.
- L_1 and L_2 are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

- A language $L \subseteq \Sigma^*$ is *NP-complete* if
 - 1. $L \in NP$
 - 2. Any $L' \in NP$ is polynomially reducible to *L*.
- **Proposition.** If *L* is *NP*-complete and $L \in P$, then P = NP.
- Corollary. If L is NP-complete and $P \neq NP$, then there exists no polynomial algorithm for L.

Structure of the class NP



Fundamental open problem: $P \neq NP$?

Proving NP-completeness

- Theorem (Cook 1971). SAT is NP-complete.
- Proposition. L is NP-complete if
 - 1. *L* ∈ *NP*
 - 2. there exists an *NP*-complete problem L' that is polynomially reducible to *L*.
- INDEPENDENT SET

Instance: Graph G = (V, E) and $k \in \mathbb{N}, k \le |V|$. Question: Is there a subset $V' \subseteq V$ such that $|V'| \ge k$ and no two vertices in V are joined by an edge in E?

Reducing 3SAT to INDEPENDENT SET

- Let *F* be a conjunction of *n* clauses of length 3, i.e., a disjunction of 3 propositional variables or their negation.
- Construct a graph G with 3n vertices that correspond to the variables in F.
- For any clause in *F*, connect by three edges the corresponding vertices in *G*.
- Connect all pairs of vertices corresponding to a variable x and its negation $\neg x$.
- F is satisfiable if and only if G contains an independent set of size n.

Solving numerical constraints

Satisfiability	over \mathbb{Q}	over $\mathbb Z$	over ℕ
Linear equations	polynomial	polynomial	NP-complete
Linear inequalities	polynomial	NP-complete	NP-complete

Satisfiability	over ${\mathbb R}$	over $\mathbb Z$
Linear constraints	polynomial	NP-complete
Nonlinear constraints	decidable	undecidable

NP-hard problems

- Decision problem: solution is either yes or no
- Search problem: find an object with required properties
- Example: Traveling salesman optimization problem: Given a network of cities and distances, find a shortest tour.
- Decision problem NP-complete \Rightarrow search problem NP-hard
- NP-hard problems: at least as hard as NP-complete problems

Graph theoretical problems

Shortest path	polynomial
Traveling salesman	NP-hard
Minimum spanning tree	polynomial
Steiner tree	NP-hard

7004