Discrete Math for Bioinformatics WS 10/11, by A. Bockmayr/K. Reinert, 9. Februar 2011, 12:41 7001

Non-deterministic Turing machines

o Next move relation:
dC(@xNx@xTIx{L R}

e L(M) = set of words w € ¥* for which there exists a sequence of moves accepting w.

e Proposition. If L is accepted by a non-deterministic Turing machine M, then L is accepted by some
deterministic machine Mo.

Time complexity

e M a (deterministic) Turing machine that halts on all inputs.
e Time complexity function Ty : N — N

Tu(n) = max{m| 3w € X", |w| = nsuch that the computation
of M on w takes m moves}

(assume numbers are coded in binary format)
e A Turing machine is polynomial if there exists a polynomial p(n) with Ty,(n) < p(n), for all n € N.

e The complexity class P is the class of languages decided by a polynomial Turing machine.
Time complexity of non-deterministic Turing machines

e M non-deterministic Turing machine
e The running time of Mon w € ¥* is

— the length of a shortest sequence of moves accepting w if w € L(M)
- 1,ifw¢ LM)

o Ty(n)=max{m | 3w € ¥ |w| = n such that the running time of M on w is m}

e The complexity class NP is the class of languages accepted by a polynomial non-deterministic Turing
machine.

Deciding languages in NP
Theorem. If L € NP, then there exists a deterministic Turing machine M and a polynomial p(n) such that

e M decides L and

o Ty(n) <2PM forall ne N.

Proof: Suppose L is accepted by a non-deterministic machine M,y whose running time is bounded by the poly-
nomial g(n).

To decide whether w € L, the machine M will

1. determine the length n of w and compute g(n).

2. simulate all executions of M,y of length at most q(n). If the maximum number of choices of M,y in one
step is r, there are at most r9" such executions.

7002 Discrete Math for Bioinformatics WS 10/11, by A. Bockmayr/K. Reinert, 9. Februar 2011, 12:41

3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by r? . ¢’ (n) = O(2P(), for some polynomial p(n).
An alternative characterization of NP

e Proposition. L € NP if there exists L’ € P and a polynomial p(n) such that for all w € £*:

wel & Fve @) :|v|<p(w|)and (w,v) e L’

e Informally, a problem is in NP if it can be solved non-deterministically in the following way:

1. guess a solution/certificate v of polynomial length,

2. check in polynomial time whether v has the desired property.
Propositional satisfiability

e Satisfiability problem SAT

Instance: A formula F in propositional logic with variables x, ..., X,.

Question: Is F satisfiable, i.e., does there exist an assignment /: {x1,...,x,} — {0,1} making
the formula true ?

e Trying all possible assignments would require exponential time.

e Guessing an assignment / and checking whether it satisfies F can be done in (non-deterministic) polyno-
mial time. Thus:

e Proposition. SAT is in NP.
Polynomial reductions
e A polynomial reduction of Ly C 37 to L, C X7 is a polynomially computable function f : X7 — X3 with
we L & f(w) e L.
e Proposition. If Ly is polynomially reducible to Ly, then

1. Ly e Piflobe Pand Ly € NPif L, € NP
2. b g PifLy & Pand Ly & NPif Ly & NP.

e L1 and L, are polynomially equivalent if they are polynomially reducible to each other.
NP-complete problems

e Alanguage L C >* is NP-complete if

1. Le NP
2. Any L’ € NP is polynomially reducible to L.

e Proposition. If L is NP-complete and L € P, then P = NP.

e Corollary. If L is NP-complete and P # NP, then there exists no polynomial algorithm for L.

Discrete Math for Bioinformatics WS 10/11, by A. Bockmayr/K. Reinert, 9. Februar 2011, 12:41 7003

Structure of the class NP

NP

NP-
complete

Fundamental open problem: P # NP ?
Proving NP-completeness

e Theorem (Cook 1971). SAT is NP-complete.
e Proposition. L is NP-complete if

1. Le NP

2. there exists an NP-complete problem L’ that is polynomially reducible to L.
e INDEPENDENT SET

Instance: Graph G=(V,E) and k € N,k < |V]|.
Question: Is there a subset V' C V such that \V’| > k and no two vertices in V are joined by
anedgein E?

Reducing 3SAT to INDEPENDENT SET

e Let F be a conjunction of n clauses of length 3, i.e., a disjunction of 3 propositional variables or their
negation.

e Construct a graph G with 3n vertices that correspond to the variables in F.
e For any clause in F, connect by three edges the corresponding vertices in G.
e Connect all pairs of vertices corresponding to a variable x and its negation —x.

e F is satisfiable if and only if G contains an independent set of size n.

Solving numerical constraints

Satisfiability || overQ | overZ | overN

Linear equations || polynomial | polynomial | NP-complete
Linear inequalities || polynomial | NP-complete | NP-complete

Satisfiability | overR over Z

Linear constraints polynomial | NP-complete
Nonlinear constraints || decidable undecidable

7004

Discrete Math for Bioinformatics WS 10/11, by A. Bockmayr/K. Reinert, 9. Februar 2011, 12:41

NP-hard problems

Decision problem: solution is either yes or no

Example: Traveling salesman decision problem:
Given a network of cities, distances, and a number B, does there exist a tour with length < B?

Search problem: find an object with required properties

Example: Traveling salesman optimization problem:
Given a network of cities and distances, find a shortest tour.

Decision problem NP-complete = search problem NP-hard

NP-hard problems: at least as hard as NP-complete problems

Graph theoretical problems

Shortest path polynomial
Traveling salesman NP-hard
Minimum spanning tree polynomial

Steiner tree NP-hard

