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Motivation

É New technology allows us to sequence more reads in shorter time.
Increasing at an incredible rate with no signs of slowing down.

É "Why should we be happy with millions of reads, when we can
have. . .
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Motivation

. . .billions?"

,
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Motivation: Why do we need another read
mapping algorithm?

É The reads themselves are also getting longer. Longer reads = higher
probability for complex variants within a read.

É Current (Feb 2010) read mappers tend to either be very fast (BWA,
Bowtie, SOAP2) or sensitive to variants (SOAP)

É GSNAP is intended to be fast and able to handle complex variants

,

FU Berlin, GSNAP, Omics WS 2011 6



Motivation: Why do we need another read
mapping algorithm?

É The reads themselves are also getting longer. Longer reads = higher
probability for complex variants within a read.

É Current (Feb 2010) read mappers tend to either be very fast (BWA,
Bowtie, SOAP2) or sensitive to variants (SOAP)

É GSNAP is intended to be fast and able to handle complex variants

,

FU Berlin, GSNAP, Omics WS 2011 6



Motivation: Why do we need another read
mapping algorithm?

É The reads themselves are also getting longer. Longer reads = higher
probability for complex variants within a read.

É Current (Feb 2010) read mappers tend to either be very fast (BWA,
Bowtie, SOAP2) or sensitive to variants (SOAP)

É GSNAP is intended to be fast and able to handle complex variants

,

FU Berlin, GSNAP, Omics WS 2011 6



Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 7



Key Features of GSNAP

É Can handle short and long insertions and deletions

É Detects short and long distance splicing (including
interchromosomal)
É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast
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Long deletion of 17nt plus mismatches

É 17nt deletion matching an entry in dbSNP, including mismatches:

,
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Splicing identified using the probabilistic
model

É An intron within exon 1 of HOXA9. Is also experimentally supported.
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Splicing identified using a database of known
splice sites

É Splicing sites identified despite having low probabilistic scores.
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Interchromosomal splicing (gene fusion)

É Splicing between BCAS4 (chr 20) and BCAS3 (chr 17).
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SNP-tolerant alignment

É SNP-tolerance allows both genotypes to align well
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The Algorithm in Brief

É Index the genome using a hash table

É Break up short reads into shorter elements and look each up in hash
table

É Look at resulting position lists for each element and see if they
support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16



The Algorithm in Brief

É Index the genome using a hash table
É Break up short reads into shorter elements and look each up in hash

table

É Look at resulting position lists for each element and see if they
support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16



The Algorithm in Brief

É Index the genome using a hash table
É Break up short reads into shorter elements and look each up in hash

table
É Look at resulting position lists for each element and see if they

support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16



The Algorithm in Brief

É Index the genome using a hash table
É Break up short reads into shorter elements and look each up in hash

table
É Look at resulting position lists for each element and see if they

support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16



Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 17



Hash Table Space Requirements

É Hashing every overlapping oligomer in the entire reference sequence
would take too much memory (approx. 14GB for the human genome)

É We only hash 12mers every 3nt (approx. 4GB)
É Optional SNP-tolerance only adds a small amount to total memory

requirements (3.8 GB → 4.0 GB)
É Entire table only needs to be in memory during construction.

Afterwards it is mmap’d and only part is loaded into memory.
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Hashing the Reference Genome

,

FU Berlin, GSNAP, Omics WS 2011 19



Including SNPs

,
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Resulting Reference "Space"
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Spanning Set Generation and Filtering
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Spanning Set Generation and Filtering
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Spanning Set Generation and Filtering

É Generating elements: used to find supporting candidate locations
É Uses a multiway merging procedure (Knuth TAOCP Vol 3)
É Slow: linear on the sum of the list lengths. O(l logn) runtime where n is

the number of position lists and l is the sum of their lengths.

É Filtering elements: filter the candidate locations found using the
generating elements
É Fast: uses a binary search. O(log li) for position list i

É Choose the elements with the shortest position lists as generating
elements, and the longer ones as filtering elements.

É They choose K + 2 generating sets, where K is the constraint score (=
max number of mismatches)
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Spanning Set Generation and Filtering

É Problem: The spanning set method can only be used to detect a
limited number of mismatches.

É If we want to allow K matches, for K > 1, then we need at least
(K + 2) generating elements. The read length L limits the number of
elements N, and the spanning set elements are non-overlapping in all
three shifts if L = 10(mod12), so N ≤ b(L+ 2)/12c.

É So we need to satisfy N > (K + 2), and as such we can only apply the
spanning set method when K ≤ b(L+ 2)/12c − 2 for L ≥ 34.

É For reads of length 100 (Illumina), the we can allow a maximum of 6
mismatches.

É For reads of length 400 (454), the we can allow a maximum of 31
mismatches.

É If we want to allow larger numbers of mismatches or the same
number of mismatches in shorter reads, we need to use another
method. . .

,
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Complete set generation and filtering

É Uses the complete set of overlapping 12mers.
É Works for any number of mismatches as long as read and target have
≥ 14 consecutive matches (12mer out of phase by up to two bases)

É Exhaustive for K ≤ bL/14c − 1

,

FU Berlin, GSNAP, Omics WS 2011 36



Complete set generation and filtering

É Lower bound on mismatches: b(∆p+ 6)/12c
where ∆p is the distance between start locations of consecutive
supporting 12mers.
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Complete set example

,
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Complete set generation and filtering
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Verification of Candidate Regions

É The spanning set and complete set methods generate candidate
regions for which we know a lower bound on the number of
mismatches.

É These regions need to be verified to check the exact number of
mismatches.
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Remember: Resulting Reference "Space"
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Compressed Genome

É Text usually stored as 8 bit characters

É Because we have a reduced alphabet the reference is stored as 3 bits
per character: 2 bits for the nt + a flag
É Flag in major-allele genome: indicates unknown or ambiguous nt
É Flag in minor-allele genome: indicates a SNP
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Verification of Candidate Regions

É Query sequence converted to the same compressed representation
as the reference

É Shifted into position and bitwise XOR combined with the major- and
minor-allele genomes separately

É Resulting arrays are bitwise AND’d, so mismatches at a SNP only
occur if both alleles do not match
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Detecting Insertions and Deletions
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Detecting Splice Junctions

É Known splice sites: user-provided database
É Novel splice sites: maximum entropy probabilistic model from Yeo

and Burge, 2004
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Detecting Splice Junctions

É Short-distance splice sites are on the same chromosome and < some
distance apart (default: 200,000 nt)

É Method similar to the one we used to find middle deletions earlier. . .
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Detecting Splice Junctions

É Crossover area is then searched for donor or acceptor sites (either
known or novel with high probability).
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Detecting Splice Junctions

É Long-distance splice sites can be on different chromosomes
É Require higher probability scores for novel splice sites than

short-distance splice sites
É Candidates with matching breakpoints on the read are matched
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Detecting Splice Junctions
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Detecting Splice Junctions

É If both splice sites can not be found then GSNAP will return one site
(a "half-intron")
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Simulated Reads

É Runtime comparison between GSNAP and other alignment tools (for
100,000 reads)

É Simulated increasingly complicated variants
É exact matches only
É 1 - 3 mismatches
É short insertions and deletions
É longer insertions and deletions
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 36nt
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Simulated Reads: 70nt
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Simulated Reads: Percent misses (on unique
reads)

É Most algorithms were able to perfectly map unique reads, with the
following notable exceptions:

É GSNAP: 12% misses for 36nt reads with 3 mismatches
É SOAP: 15% misses for 36nt reads with 3 mismatches, around 5% for

1-3nt indels
É BWA: 1-5% misses in 1-3nt indels
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Memory Requirements

É GSNAP: should have access to 5 GB of memory, otherwise it will run
slowly

É BWA: 2.2 GB
É Bowtie: 1.1 GB (exact matches) or 2.2 GB (allowing mismatches)
É MAQ: 302 MB
É SOAP: 14 GB
É SOAP2: unknown ("only provided as a binary and did not have the

required compile time flag")
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Transcriptional Reads

É Only looked at the effect of splicing, indels and SNP tolerance

É Including known splicing information → increased yield approx. 8%
É Including SNP tolerance → minor increase in yield (0.5%) but effected

about 8% of alignments

,
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Limitations

É Matching is only exhaustive if there is at least a 14nt contiguous
match, otherwise it’s a heuristic

É Limited to one indel or splice site per read
É Does not use read quality scores
É Does not work with ABI SOLiD data
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TL;DR

É Comparable to other fast read alignment algorithms in terms of
speed, but can handle more complex variants and splicing
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Aligning Paired-End Reads

É Optional

,
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Bisulfite-converted DNA

É Optional

,
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