
GSNAP: Fast and SNP-tolerant detection of complex variants and splic-
ing in short reads
by Thomas D. Wu and Serban Nacu

Matt Huska
Freie Universität Berlin

Computational Methods for High-Throughput Omics Data, WS 2011

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 2

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 2

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 2

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 2

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 3

Motivation

É New technology allows us to sequence more reads in shorter time.
Increasing at an incredible rate with no signs of slowing down.

É "Why should we be happy with millions of reads, when we can
have. . .

,

FU Berlin, GSNAP, Omics WS 2011 4

Motivation

É New technology allows us to sequence more reads in shorter time.
Increasing at an incredible rate with no signs of slowing down.

É "Why should we be happy with millions of reads, when we can
have. . .

,

FU Berlin, GSNAP, Omics WS 2011 4

Motivation

. . .billions?"

,

FU Berlin, GSNAP, Omics WS 2011 5

Motivation: Why do we need another read
mapping algorithm?

É The reads themselves are also getting longer. Longer reads = higher
probability for complex variants within a read.

É Current (Feb 2010) read mappers tend to either be very fast (BWA,
Bowtie, SOAP2) or sensitive to variants (SOAP)

É GSNAP is intended to be fast and able to handle complex variants

,

FU Berlin, GSNAP, Omics WS 2011 6

Motivation: Why do we need another read
mapping algorithm?

É The reads themselves are also getting longer. Longer reads = higher
probability for complex variants within a read.

É Current (Feb 2010) read mappers tend to either be very fast (BWA,
Bowtie, SOAP2) or sensitive to variants (SOAP)

É GSNAP is intended to be fast and able to handle complex variants

,

FU Berlin, GSNAP, Omics WS 2011 6

Motivation: Why do we need another read
mapping algorithm?

É The reads themselves are also getting longer. Longer reads = higher
probability for complex variants within a read.

É Current (Feb 2010) read mappers tend to either be very fast (BWA,
Bowtie, SOAP2) or sensitive to variants (SOAP)

É GSNAP is intended to be fast and able to handle complex variants

,

FU Berlin, GSNAP, Omics WS 2011 6

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 7

Key Features of GSNAP

É Can handle short and long insertions and deletions

É Detects short and long distance splicing (including
interchromosomal)
É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Key Features of GSNAP

É Can handle short and long insertions and deletions
É Detects short and long distance splicing (including

interchromosomal)

É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Key Features of GSNAP

É Can handle short and long insertions and deletions
É Detects short and long distance splicing (including

interchromosomal)
É user-provided database of splice sites (eg. RefSeq)

É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Key Features of GSNAP

É Can handle short and long insertions and deletions
É Detects short and long distance splicing (including

interchromosomal)
É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Key Features of GSNAP

É Can handle short and long insertions and deletions
É Detects short and long distance splicing (including

interchromosomal)
É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)

É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Key Features of GSNAP

É Can handle short and long insertions and deletions
É Detects short and long distance splicing (including

interchromosomal)
É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)

É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Key Features of GSNAP

É Can handle short and long insertions and deletions
É Detects short and long distance splicing (including

interchromosomal)
É user-provided database of splice sites (eg. RefSeq)
É probabilistic model

É SNP tolerant (given a user-provided database eg. dbSNP)
É Can align bisulfite-treated DNA (for studying methlyation state)
É Still pretty fast

,

FU Berlin, GSNAP, Omics WS 2011 8

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 9

Long deletion of 17nt plus mismatches

É 17nt deletion matching an entry in dbSNP, including mismatches:

,

FU Berlin, GSNAP, Omics WS 2011 10

Splicing identified using the probabilistic
model

É An intron within exon 1 of HOXA9. Is also experimentally supported.

,

FU Berlin, GSNAP, Omics WS 2011 11

Splicing identified using a database of known
splice sites

É Splicing sites identified despite having low probabilistic scores.

,

FU Berlin, GSNAP, Omics WS 2011 12

Interchromosomal splicing (gene fusion)

É Splicing between BCAS4 (chr 20) and BCAS3 (chr 17).

,

FU Berlin, GSNAP, Omics WS 2011 13

SNP-tolerant alignment

É SNP-tolerance allows both genotypes to align well

,

FU Berlin, GSNAP, Omics WS 2011 14

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 15

The Algorithm in Brief

É Index the genome using a hash table

É Break up short reads into shorter elements and look each up in hash
table

É Look at resulting position lists for each element and see if they
support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16

The Algorithm in Brief

É Index the genome using a hash table
É Break up short reads into shorter elements and look each up in hash

table

É Look at resulting position lists for each element and see if they
support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16

The Algorithm in Brief

É Index the genome using a hash table
É Break up short reads into shorter elements and look each up in hash

table
É Look at resulting position lists for each element and see if they

support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16

The Algorithm in Brief

É Index the genome using a hash table
É Break up short reads into shorter elements and look each up in hash

table
É Look at resulting position lists for each element and see if they

support a common target location and have a reasonable number of
mismatches

É Verify the number of mismatches by checking the whole read against
the reference

,

FU Berlin, GSNAP, Omics WS 2011 16

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 17

Hash Table Space Requirements

É Hashing every overlapping oligomer in the entire reference sequence
would take too much memory (approx. 14GB for the human genome)

É We only hash 12mers every 3nt (approx. 4GB)
É Optional SNP-tolerance only adds a small amount to total memory

requirements (3.8 GB → 4.0 GB)
É Entire table only needs to be in memory during construction.

Afterwards it is mmap’d and only part is loaded into memory.

,

FU Berlin, GSNAP, Omics WS 2011 18

Hash Table Space Requirements

É Hashing every overlapping oligomer in the entire reference sequence
would take too much memory (approx. 14GB for the human genome)

É We only hash 12mers every 3nt (approx. 4GB)

É Optional SNP-tolerance only adds a small amount to total memory
requirements (3.8 GB → 4.0 GB)

É Entire table only needs to be in memory during construction.
Afterwards it is mmap’d and only part is loaded into memory.

,

FU Berlin, GSNAP, Omics WS 2011 18

Hash Table Space Requirements

É Hashing every overlapping oligomer in the entire reference sequence
would take too much memory (approx. 14GB for the human genome)

É We only hash 12mers every 3nt (approx. 4GB)
É Optional SNP-tolerance only adds a small amount to total memory

requirements (3.8 GB → 4.0 GB)

É Entire table only needs to be in memory during construction.
Afterwards it is mmap’d and only part is loaded into memory.

,

FU Berlin, GSNAP, Omics WS 2011 18

Hash Table Space Requirements

É Hashing every overlapping oligomer in the entire reference sequence
would take too much memory (approx. 14GB for the human genome)

É We only hash 12mers every 3nt (approx. 4GB)
É Optional SNP-tolerance only adds a small amount to total memory

requirements (3.8 GB → 4.0 GB)
É Entire table only needs to be in memory during construction.

Afterwards it is mmap’d and only part is loaded into memory.

,

FU Berlin, GSNAP, Omics WS 2011 18

Hashing the Reference Genome

,

FU Berlin, GSNAP, Omics WS 2011 19

Including SNPs

,

FU Berlin, GSNAP, Omics WS 2011 20

Resulting Reference "Space"

,

FU Berlin, GSNAP, Omics WS 2011 21

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 22

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 23

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 24

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 25

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 26

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 27

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 28

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 29

Spanning Set Generation and Filtering

É Generating elements: used to find supporting candidate locations
É Uses a multiway merging procedure (Knuth TAOCP Vol 3)
É Slow: linear on the sum of the list lengths. O(l logn) runtime where n is

the number of position lists and l is the sum of their lengths.

É Filtering elements: filter the candidate locations found using the
generating elements
É Fast: uses a binary search. O(log li) for position list i

É Choose the elements with the shortest position lists as generating
elements, and the longer ones as filtering elements.

É They choose K + 2 generating sets, where K is the constraint score (=
max number of mismatches)

,

FU Berlin, GSNAP, Omics WS 2011 30

Spanning Set Generation and Filtering

É Generating elements: used to find supporting candidate locations
É Uses a multiway merging procedure (Knuth TAOCP Vol 3)
É Slow: linear on the sum of the list lengths. O(l logn) runtime where n is

the number of position lists and l is the sum of their lengths.
É Filtering elements: filter the candidate locations found using the

generating elements
É Fast: uses a binary search. O(log li) for position list i

É Choose the elements with the shortest position lists as generating
elements, and the longer ones as filtering elements.

É They choose K + 2 generating sets, where K is the constraint score (=
max number of mismatches)

,

FU Berlin, GSNAP, Omics WS 2011 30

Spanning Set Generation and Filtering

É Generating elements: used to find supporting candidate locations
É Uses a multiway merging procedure (Knuth TAOCP Vol 3)
É Slow: linear on the sum of the list lengths. O(l logn) runtime where n is

the number of position lists and l is the sum of their lengths.
É Filtering elements: filter the candidate locations found using the

generating elements
É Fast: uses a binary search. O(log li) for position list i

É Choose the elements with the shortest position lists as generating
elements, and the longer ones as filtering elements.

É They choose K + 2 generating sets, where K is the constraint score (=
max number of mismatches)

,

FU Berlin, GSNAP, Omics WS 2011 30

Spanning Set Generation and Filtering

É Generating elements: used to find supporting candidate locations
É Uses a multiway merging procedure (Knuth TAOCP Vol 3)
É Slow: linear on the sum of the list lengths. O(l logn) runtime where n is

the number of position lists and l is the sum of their lengths.
É Filtering elements: filter the candidate locations found using the

generating elements
É Fast: uses a binary search. O(log li) for position list i

É Choose the elements with the shortest position lists as generating
elements, and the longer ones as filtering elements.

É They choose K + 2 generating sets, where K is the constraint score (=
max number of mismatches)

,

FU Berlin, GSNAP, Omics WS 2011 30

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 31

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 32

Spanning Set Generation and Filtering

,

FU Berlin, GSNAP, Omics WS 2011 33

Spanning Set Generation and Filtering

É Problem: The spanning set method can only be used to detect a
limited number of mismatches.

É If we want to allow K matches, for K > 1, then we need at least
(K + 2) generating elements. The read length L limits the number of
elements N, and the spanning set elements are non-overlapping in all
three shifts if L = 10(mod12), so N ≤ b(L+ 2)/12c.

É So we need to satisfy N > (K + 2), and as such we can only apply the
spanning set method when K ≤ b(L+ 2)/12c − 2 for L ≥ 34.

É For reads of length 100 (Illumina), the we can allow a maximum of 6
mismatches.

É For reads of length 400 (454), the we can allow a maximum of 31
mismatches.

É If we want to allow larger numbers of mismatches or the same
number of mismatches in shorter reads, we need to use another
method. . .

,

FU Berlin, GSNAP, Omics WS 2011 34

Spanning Set Generation and Filtering

É Problem: The spanning set method can only be used to detect a
limited number of mismatches.

É If we want to allow K matches, for K > 1, then we need at least
(K + 2) generating elements. The read length L limits the number of
elements N, and the spanning set elements are non-overlapping in all
three shifts if L = 10(mod12), so N ≤ b(L+ 2)/12c.

É So we need to satisfy N > (K + 2), and as such we can only apply the
spanning set method when K ≤ b(L+ 2)/12c − 2 for L ≥ 34.

É For reads of length 100 (Illumina), the we can allow a maximum of 6
mismatches.

É For reads of length 400 (454), the we can allow a maximum of 31
mismatches.

É If we want to allow larger numbers of mismatches or the same
number of mismatches in shorter reads, we need to use another
method. . .

,

FU Berlin, GSNAP, Omics WS 2011 34

Spanning Set Generation and Filtering

É Problem: The spanning set method can only be used to detect a
limited number of mismatches.

É If we want to allow K matches, for K > 1, then we need at least
(K + 2) generating elements. The read length L limits the number of
elements N, and the spanning set elements are non-overlapping in all
three shifts if L = 10(mod12), so N ≤ b(L+ 2)/12c.

É So we need to satisfy N > (K + 2), and as such we can only apply the
spanning set method when K ≤ b(L+ 2)/12c − 2 for L ≥ 34.

É For reads of length 100 (Illumina), the we can allow a maximum of 6
mismatches.

É For reads of length 400 (454), the we can allow a maximum of 31
mismatches.

É If we want to allow larger numbers of mismatches or the same
number of mismatches in shorter reads, we need to use another
method. . .

,

FU Berlin, GSNAP, Omics WS 2011 34

Spanning Set Generation and Filtering

É Problem: The spanning set method can only be used to detect a
limited number of mismatches.

É If we want to allow K matches, for K > 1, then we need at least
(K + 2) generating elements. The read length L limits the number of
elements N, and the spanning set elements are non-overlapping in all
three shifts if L = 10(mod12), so N ≤ b(L+ 2)/12c.

É So we need to satisfy N > (K + 2), and as such we can only apply the
spanning set method when K ≤ b(L+ 2)/12c − 2 for L ≥ 34.

É For reads of length 100 (Illumina), the we can allow a maximum of 6
mismatches.

É For reads of length 400 (454), the we can allow a maximum of 31
mismatches.

É If we want to allow larger numbers of mismatches or the same
number of mismatches in shorter reads, we need to use another
method. . .

,

FU Berlin, GSNAP, Omics WS 2011 34

Spanning Set Generation and Filtering

É Problem: The spanning set method can only be used to detect a
limited number of mismatches.

É If we want to allow K matches, for K > 1, then we need at least
(K + 2) generating elements. The read length L limits the number of
elements N, and the spanning set elements are non-overlapping in all
three shifts if L = 10(mod12), so N ≤ b(L+ 2)/12c.

É So we need to satisfy N > (K + 2), and as such we can only apply the
spanning set method when K ≤ b(L+ 2)/12c − 2 for L ≥ 34.

É For reads of length 100 (Illumina), the we can allow a maximum of 6
mismatches.

É For reads of length 400 (454), the we can allow a maximum of 31
mismatches.

É If we want to allow larger numbers of mismatches or the same
number of mismatches in shorter reads, we need to use another
method. . .

,

FU Berlin, GSNAP, Omics WS 2011 34

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 35

Complete set generation and filtering

É Uses the complete set of overlapping 12mers.
É Works for any number of mismatches as long as read and target have
≥ 14 consecutive matches (12mer out of phase by up to two bases)

É Exhaustive for K ≤ bL/14c − 1

,

FU Berlin, GSNAP, Omics WS 2011 36

Complete set generation and filtering

É Lower bound on mismatches: b(∆p+ 6)/12c
where ∆p is the distance between start locations of consecutive
supporting 12mers.

,

FU Berlin, GSNAP, Omics WS 2011 37

Complete set generation and filtering

É Lower bound on mismatches: b(∆p+ 6)/12c
where ∆p is the distance between start locations of consecutive
supporting 12mers.

,

FU Berlin, GSNAP, Omics WS 2011 37

Complete set example

,

FU Berlin, GSNAP, Omics WS 2011 38

Complete set generation and filtering

,

FU Berlin, GSNAP, Omics WS 2011 39

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 40

Verification of Candidate Regions

É The spanning set and complete set methods generate candidate
regions for which we know a lower bound on the number of
mismatches.

É These regions need to be verified to check the exact number of
mismatches.

,

FU Berlin, GSNAP, Omics WS 2011 41

Remember: Resulting Reference "Space"

,

FU Berlin, GSNAP, Omics WS 2011 42

Compressed Genome

É Text usually stored as 8 bit characters

É Because we have a reduced alphabet the reference is stored as 3 bits
per character: 2 bits for the nt + a flag
É Flag in major-allele genome: indicates unknown or ambiguous nt
É Flag in minor-allele genome: indicates a SNP

,

FU Berlin, GSNAP, Omics WS 2011 43

Compressed Genome

É Text usually stored as 8 bit characters
É Because we have a reduced alphabet the reference is stored as 3 bits

per character: 2 bits for the nt + a flag

É Flag in major-allele genome: indicates unknown or ambiguous nt
É Flag in minor-allele genome: indicates a SNP

,

FU Berlin, GSNAP, Omics WS 2011 43

Compressed Genome

É Text usually stored as 8 bit characters
É Because we have a reduced alphabet the reference is stored as 3 bits

per character: 2 bits for the nt + a flag
É Flag in major-allele genome: indicates unknown or ambiguous nt
É Flag in minor-allele genome: indicates a SNP

,

FU Berlin, GSNAP, Omics WS 2011 43

Verification of Candidate Regions

É Query sequence converted to the same compressed representation
as the reference

É Shifted into position and bitwise XOR combined with the major- and
minor-allele genomes separately

É Resulting arrays are bitwise AND’d, so mismatches at a SNP only
occur if both alleles do not match

,

FU Berlin, GSNAP, Omics WS 2011 44

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 45

Detecting Insertions and Deletions

,

FU Berlin, GSNAP, Omics WS 2011 46

Detecting Insertions and Deletions

,

FU Berlin, GSNAP, Omics WS 2011 47

Detecting Insertions and Deletions

,

FU Berlin, GSNAP, Omics WS 2011 48

Detecting Insertions and Deletions

,

FU Berlin, GSNAP, Omics WS 2011 49

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 50

Detecting Splice Junctions

É Known splice sites: user-provided database
É Novel splice sites: maximum entropy probabilistic model from Yeo

and Burge, 2004

,

FU Berlin, GSNAP, Omics WS 2011 51

Detecting Splice Junctions

É Short-distance splice sites are on the same chromosome and < some
distance apart (default: 200,000 nt)

É Method similar to the one we used to find middle deletions earlier. . .

,

FU Berlin, GSNAP, Omics WS 2011 52

Detecting Splice Junctions

É Crossover area is then searched for donor or acceptor sites (either
known or novel with high probability).

,

FU Berlin, GSNAP, Omics WS 2011 53

Detecting Splice Junctions

É Crossover area is then searched for donor or acceptor sites (either
known or novel with high probability).

,

FU Berlin, GSNAP, Omics WS 2011 53

Detecting Splice Junctions

É Long-distance splice sites can be on different chromosomes
É Require higher probability scores for novel splice sites than

short-distance splice sites
É Candidates with matching breakpoints on the read are matched

,

FU Berlin, GSNAP, Omics WS 2011 54

Detecting Splice Junctions

,

FU Berlin, GSNAP, Omics WS 2011 55

Detecting Splice Junctions

É If both splice sites can not be found then GSNAP will return one site
(a "half-intron")

,

FU Berlin, GSNAP, Omics WS 2011 56

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 57

Simulated Reads

É Runtime comparison between GSNAP and other alignment tools (for
100,000 reads)

É Simulated increasingly complicated variants
É exact matches only
É 1 - 3 mismatches
É short insertions and deletions
É longer insertions and deletions

,

FU Berlin, GSNAP, Omics WS 2011 58

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: Exact

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 59

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: 1 mm

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 60

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: 2 mm

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 61

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: 3 mm

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 62

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: Ins (1...3nt)

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 63

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: Del (1...3nt)

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 64

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: Ins (4...9nt)

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 65

Simulated Reads: 36nt

GSNAP BWA Bowtie SOAP2 SOAP MAQ

Variant: Del (4...30nt)

Mapping Software

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

,

FU Berlin, GSNAP, Omics WS 2011 66

Simulated Reads: 36nt

E
xa

ct

1
m

m

2
m

m

3
m

m

In
s

(1
...

3n
t)

D
el

 (
1.

..3
nt

)

In
s

(4
...

9n
t)

D
el

 (
4.

..3
0n

t)

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

GSNAP
BWA
Bowtie
SOAP2
SOAP
MAQ

,

FU Berlin, GSNAP, Omics WS 2011 67

Simulated Reads: 70nt

E
xa

ct

1
m

m

2
m

m

3
m

m

4
m

m

In
s

(1
...

3n
t)

D
el

 (
1.

..3
nt

)

In
s

(4
...

9n
t)

D
el

 (
4.

..3
0n

t)

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

GSNAP
BWA
Bowtie
SOAP2
SOAP
MAQ

,

FU Berlin, GSNAP, Omics WS 2011 68

Simulated Reads: 100nt

E
xa

ct

1
m

m

2
m

m

3
m

m

4
m

m

5
m

m

In
s

(1
...

3n
t)

D
el

 (
1.

..3
nt

)

In
s

(4
...

9n
t)

D
el

 (
4.

..3
0n

t)

R
un

tim
e

(s
)

0
50

0
10

00
15

00
20

00
25

00
30

00

GSNAP
BWA
Bowtie
SOAP2
SOAP
MAQ

,

FU Berlin, GSNAP, Omics WS 2011 69

Simulated Reads: Percent misses (on unique
reads)

É Most algorithms were able to perfectly map unique reads, with the
following notable exceptions:

É GSNAP: 12% misses for 36nt reads with 3 mismatches
É SOAP: 15% misses for 36nt reads with 3 mismatches, around 5% for

1-3nt indels
É BWA: 1-5% misses in 1-3nt indels

,

FU Berlin, GSNAP, Omics WS 2011 70

Simulated Reads: Percent misses (on unique
reads)

É Most algorithms were able to perfectly map unique reads, with the
following notable exceptions:

É GSNAP: 12% misses for 36nt reads with 3 mismatches

É SOAP: 15% misses for 36nt reads with 3 mismatches, around 5% for
1-3nt indels

É BWA: 1-5% misses in 1-3nt indels

,

FU Berlin, GSNAP, Omics WS 2011 70

Simulated Reads: Percent misses (on unique
reads)

É Most algorithms were able to perfectly map unique reads, with the
following notable exceptions:

É GSNAP: 12% misses for 36nt reads with 3 mismatches
É SOAP: 15% misses for 36nt reads with 3 mismatches, around 5% for

1-3nt indels

É BWA: 1-5% misses in 1-3nt indels

,

FU Berlin, GSNAP, Omics WS 2011 70

Simulated Reads: Percent misses (on unique
reads)

É Most algorithms were able to perfectly map unique reads, with the
following notable exceptions:

É GSNAP: 12% misses for 36nt reads with 3 mismatches
É SOAP: 15% misses for 36nt reads with 3 mismatches, around 5% for

1-3nt indels
É BWA: 1-5% misses in 1-3nt indels

,

FU Berlin, GSNAP, Omics WS 2011 70

Memory Requirements

É GSNAP: should have access to 5 GB of memory, otherwise it will run
slowly

É BWA: 2.2 GB
É Bowtie: 1.1 GB (exact matches) or 2.2 GB (allowing mismatches)
É MAQ: 302 MB
É SOAP: 14 GB
É SOAP2: unknown ("only provided as a binary and did not have the

required compile time flag")

,

FU Berlin, GSNAP, Omics WS 2011 71

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 72

Transcriptional Reads

É Only looked at the effect of splicing, indels and SNP tolerance

É Including known splicing information → increased yield approx. 8%
É Including SNP tolerance → minor increase in yield (0.5%) but effected

about 8% of alignments

,

FU Berlin, GSNAP, Omics WS 2011 73

Transcriptional Reads

É Only looked at the effect of splicing, indels and SNP tolerance
É Including known splicing information → increased yield approx. 8%

É Including SNP tolerance → minor increase in yield (0.5%) but effected
about 8% of alignments

,

FU Berlin, GSNAP, Omics WS 2011 73

Transcriptional Reads

É Only looked at the effect of splicing, indels and SNP tolerance
É Including known splicing information → increased yield approx. 8%
É Including SNP tolerance → minor increase in yield (0.5%) but effected

about 8% of alignments

,

FU Berlin, GSNAP, Omics WS 2011 73

Outline

Introduction
Motivation
GSNAP Features
Examples of Complex Variant Detection

The Algorithm
Summary
Preprocessing
Method 1: Spanning Set Generation and Filtering
Method 2: Complete Set Generation and Filtering
Verification of Candidate Regions
Detecting Insertions and Deletions
Detecting Splice Junctions

Results
Simulated Reads
Transcriptional Reads
Limitations

Conclusions

,

FU Berlin, GSNAP, Omics WS 2011 74

Limitations

É Matching is only exhaustive if there is at least a 14nt contiguous
match, otherwise it’s a heuristic

É Limited to one indel or splice site per read
É Does not use read quality scores
É Does not work with ABI SOLiD data

,

FU Berlin, GSNAP, Omics WS 2011 75

Limitations

É Matching is only exhaustive if there is at least a 14nt contiguous
match, otherwise it’s a heuristic

É Limited to one indel or splice site per read

É Does not use read quality scores
É Does not work with ABI SOLiD data

,

FU Berlin, GSNAP, Omics WS 2011 75

Limitations

É Matching is only exhaustive if there is at least a 14nt contiguous
match, otherwise it’s a heuristic

É Limited to one indel or splice site per read
É Does not use read quality scores

É Does not work with ABI SOLiD data

,

FU Berlin, GSNAP, Omics WS 2011 75

Limitations

É Matching is only exhaustive if there is at least a 14nt contiguous
match, otherwise it’s a heuristic

É Limited to one indel or splice site per read
É Does not use read quality scores
É Does not work with ABI SOLiD data

,

FU Berlin, GSNAP, Omics WS 2011 75

TL;DR

É Comparable to other fast read alignment algorithms in terms of
speed, but can handle more complex variants and splicing

,

FU Berlin, GSNAP, Omics WS 2011 76

For Further Reading I

Knuth D.E.
The Art of Computer Programming: Sorting and Searching. Vol 3.
Addison-Wesley, 1973

Thomas D. Wu and Serban Nacu
Fast and SNP-tolerant detection of complex variants and splicing in
short reads
Bioinformatics, 2010 Apr 1;26(7):873-81.

Yeo G and Burge CB.
Maximum entropy modeling of short sequence motifs with
applications to RNA splicing signals
J Comput Biol. 2004;11(2-3):377-94.

,

FU Berlin, GSNAP, Omics WS 2011 77

Aligning Paired-End Reads

É Optional

,

FU Berlin, GSNAP, Omics WS 2011 78

Bisulfite-converted DNA

É Optional

,

FU Berlin, GSNAP, Omics WS 2011 79

	Introduction
	Motivation
	GSNAP Features
	Examples of Complex Variant Detection

	The Algorithm
	Summary
	Preprocessing
	Method 1: Spanning Set Generation and Filtering
	Method 2: Complete Set Generation and Filtering
	Verification of Candidate Regions
	Detecting Insertions and Deletions
	Detecting Splice Junctions

	Results
	Simulated Reads
	Transcriptional Reads
	Limitations

	Conclusions
	Appendix

