Discrete Mathematics for Bioinformatics (P1)

WS 2010/11

Exercises 12 (Optional)

1. Metaheuristics (NIVEAU I)

Given the complete undirected graph $G=(V, E)$ for a set of V of vertices, and a function $w: E \mapsto \mathbb{R}^{+}$that assigns a positive weight to each edge. The Traveling Salesman Problem (TSP) is to find a cyclic path in G that contains each vertex in V exactly once and has minimal total weight.
(a) Describe a brute force algorithm for solving the TSP.
(b) Describe several heuristics to approximate the TSP. Use at least the following techniques:

- Iterated local search.
- Simulated annealing.
- Ant colony optimization.
- Evolutionary computing.

You may also evolve your own ideas.
(c) How can the TSP be formulated as ILP?

2. SAT Problem (NIVEAU I)

The pigeon-hole SAT problem expresses the problem of finding a way to place n pigeons in $n-1$ pigeon-holes such that no hole contains more than one pigeon. Obviously, this problem is unsatisfiable.

- Model the Pigeon-hole SAT problem. (See script: Literals, clauses, clause-sets)

3. IP (NIVEAU II)

Given variables $x_{1}, \ldots, x_{n} \in\{0,1, \ldots m\}$
model in IP: $\left|x_{i}-x_{j}\right| \geq 2, \forall i \neq j$.

