Constraint Programming

Constraint Programming

- Basic idea: Programming with constraints, i.e. constraint solving embedded in a programming language
- Constraints: linear, non-linear, finite domain, Boolean, ...
- Programming: logic, functional, object-oriented, imperative, concurrent, ... mathematical programming vs. computer programming
- Systems: Prolog III/IV, CHIP, ECLIPSE, ILOG, CHOCO, Gecode, JaCoP ...

Finite Domain Constraints

Constraint satisfaction problem (CSP)

- n variables x_{1}, \ldots, x_{n}
- For each variable x_{j} a finite domain D_{j} of possible values, often $D_{j} \subset \mathbb{N}$.
- m constraints C_{1}, \ldots, C_{m}, where $C_{i} \subseteq D_{i_{1}} \times \ldots \times D_{i_{k_{i}}}$ is a relation between k_{i} variables $x_{i_{1}}, \ldots, x_{i_{k_{i}}}$. Write also $C_{i_{1}, \ldots, i_{k_{j}}}$.
- A solution is an assignment of a value D_{j} to x_{j}, for each $j=1, \ldots, n$, such that all relations C_{i} are satisfied.

Coloring Problem

- Decide whether a map can be colored by 3 colors such that neighboring regions get different colors.
- For each region a variable \mathbf{x}_{j} with domain $D_{j}=\{$ red, green, blue $\}$.
- For each pair of variables x_{i}, x_{j} corresponding to two neighboring regions, a constraint $\mathbf{x}_{\mathbf{i}} \neq \mathbf{x}_{\mathbf{j}}$.
- NP-complete problem.

Resolution by Backtracking

- Instantiate the variables in some order.
- As soon as all variables in a constraint are instantiated, determine its truth value.
- If the constraint is not satisfied, backtrack to the last variable whose domain contains unassigned values, otherwise continue instantiation.

Efficiency Problems

Mackworth 77

1. If the domain D_{j} of a variable x_{j} contains a value v that does not satisfy C_{j}, this will be the cause of repeated instantiation followed by immediate failure.
2. If we instantiate the variables in the order $x_{1}, x_{2}, \ldots, x_{n}$, and for $x_{i}=v$ there is no value $w \in D_{j}$, for $j>i$, such that $C_{i j}(v, w)$ is satisfied, then backtracking will try all values for x_{j}, fail and try all values for x_{j-1} (and for each value of x_{j-1} again all values for x_{j}), and so on until it tries all combinations of values for x_{i+1}, \ldots, x_{j} before finally discovering that v is not a possible value for x_{j}.

The identical failure process may be repeated for all other sets of values for x_{1}, \ldots, x_{i-1} with $x_{i}=v$.

Local Consistency

- Consider CSP with unary and binary constraints only.
- Constraint graph G
- For each variable x_{i} a node i.
- For each pair of variables x_{i}, x_{j} occurring in the same binary constraint, two arcs (i, j) and (j, i).
- The node i is consistent if $C_{i}(v)$, for all $v \in D_{i}$.
- The arc (i, j) is consistent, if for all $v \in D_{i}$ with $C_{i}(v)$ there exists $w \in D_{j}$ with $C_{j}(w)$ such that $C_{i j}(v, w)$.
- The graph is node consistent resp. arc consistent if all its nodes (resp. arcs) are consistent.

Arc Consistency

```
Algorithm AC-3 (Mackworth 77):
begin
    for }i\leftarrow1\mathrm{ until }n\mathrm{ do }\mp@subsup{D}{i}{}\leftarrow{v\in\mp@subsup{D}{i}{}|\mp@subsup{C}{i}{}(v)}
    Q\leftarrow{(i,j)|(i,j)\in\operatorname{arcs(G),i\not=j}}\\mp@code{\})
    while Q not empty do
        begin
            select and delete an arc (i,j) from Q;
            if REVISE(i,j) then
                Q\leftarrowQ\cup{(k,i)|(k,i)\in\operatorname{arcs}(G),k\not=i,k\not=j}
        end
end
```


Arc Consistency

```
procedure REVISE(i,j):
begin
    DELETE }\leftarrow fals
    for each v}\in\mp@subsup{D}{i}{}\mathrm{ do
        if there is no w}\in\mp@subsup{D}{j}{}\mathrm{ such that }\mp@subsup{C}{ij}{}(v,w)\mathrm{ then
            begin
                delete v from Di;
                DELETE \leftarrow true
            end;
    return DELETE
end
```


Crossword Puzzle

Dechter 92

Word List

Aft	Laser
Ale	Lee
Eel	Line
Heel	Sails
Hike	Sheet
Hoses	Steer
Keel	Tie
Knot	

Solution

Lookahead

Apply local consistency dynamically during search

- Forward Checking: After assigning to x the value v, eliminate for all uninstantiated variables y the values from D_{y} that are incompatible with v.
- Partial Lookahead: Establish arc consistency for all $\left(y, y^{\prime}\right)$, where y, y^{\prime} have not been instantiated yet and y will be instantiated before y^{\prime}.
- Full Lookahead: Establish arc consistency for all uninstantiated variables.

n-Queens Problem

Place n queens in an $n \times n$ chessboard such that no two queens threaten each other.

- Variables $x_{i}, i=1, \ldots, n$ with domain $D_{i}=\{1, \ldots, n\}$ indicating the column of the queen in line i.
- Constraints
- $x_{i} \neq x_{j}$, for $1 \leq i<j \leq n$ (vertical)
- $x_{i} \neq x_{j}+(j-i)$, for $1 \leq i<j \leq n$ (diagonal 1)
- $x_{i} \neq x_{j}-(j-i)$, for $1 \leq i<j \leq n$ (diagonal 2)

Forward Checking (2)

Forward Checking

Partial Lookahead

Partial Lookahead

Full Lookahead

Full Lookahead

Typical structure of a constraint program

- Declare the variables and their domains
- State the constraints
- Enumeration (labeling)

The constraint solver achieves only local consistency. In order to get global consistency, the domains have to be enumerated.

Labeling

- Assigning to the variables their possible values and constructing the corresponding search tree.
- Important questions

1. In which order should the variables be instantiated (variable selection)?
2. In which order should the values be assigned to a selected variable (value selection) ?

- Static vs. dynamic orderings
- Heuristics

Dynamic variable/value orderings

- Variable orderings
- Choose the variable with the smallest domain "first fail"
- Choose the variable with the smallest domain that occurs in most of the constraints "most constrained"
- Choose the variable which has the smallest/largest lower/upper bound on its domain.
- Value orderings
- Try first the minimal value in the current domain.
- Try first the maximal value in the current domain.
- Try first some value in the middle of the current domain.

Constraint programming systems

System	Avail.	Constraints	Language	Web site
B-prolog	comm.	FinDom	Prolog	www.probp.com
CHIP	comm.	FinDom, Boolean, Linear \mathbb{Q} Hybrid	Prolog, C, C++	www.cosytec.com
Choco	free	FinDom	Java	choco.emn.fr
Eclipse	free non- profit	FinDom, Hybrid	Prolog	eclipseclp.org
Gecode	free	FinDom	C++	www.gecode.org
GNU Prolog	free	FinDom	Prolog	gnu-prolog.inria.fr
IF/Prolog	comm.	FinDom Boolean, Linear \mathbb{R}	Prolog	www.ifcomputer.com/IFProlog/
ILOG	comm.	FinDom, Hybrid	C++, Java	www-01.ibm.com/software/ integration/optimization/cplex-cp-optimizer/
JaCoP	free	FinDom	Java	jacop.osolpro.com
NCL	comm.	FinDom	www.enginest.com	
Mozart	free	FinDom	Oz	www.mozart-oz.org
Prolog IV	comm.	FinDom, nonlinear intervals	Prolog	www.prologia.fr
Sicstus	comm.	FinDom, Boolean, linear \mathbb{R} / \mathbb{Q}	Prolog	www.sics.se/sicstus/

