
Discrete Math for Bioinformatics WS 11/12: , by A. Bockmayr/K. Reinert, 31. Oktober 2011, 09:54 4001

Tree decomposition
The exposition is based on the following sources, which are all recommended reading:

1. Kleinberg, Tardos: Algorithm Design, Addison Wesley, 2006

2. Cai et al: Rapid ab initio RNA Folding Including Pseudoknots via Graph Tree Decomposition.

Introduction

It is often the case that problems that are generally hard to solve, can be solved quite efficiently if the input has
a certain structure. For example finding longest paths in a general graph is NP-hard, whereas finding a longest
path in a DAG can be solved by a simple DFS traversal.

Many algorithms on graphs become easy if the input graph is a tree. For example computing the maximal
independent set on a graph can be computed in linear time if the graph is a tree.

The question is now whether one can take advantage of those well performing algorithms on input that are
almost good, that means for example almost a tree.

The notion of being almost a tree can be formalized using the concept of tree width. If the tree width of a graph
is small, then it is tree-like. In particular, a tree has tree-width 1. Tree width is defined using the concept of tree
decomposition.

a b

c

d

efg

h

i

Is this graph tree-like?

Definition

Formally, a tree decomposition of G = (V ,E) consists of a tree T and a subset Vt ⊆ V associated with each node
t ∈ T . We will call the subsets Vt pieces of the tree decomposition. T and {Vt : t ∈ T} must satisfy:

• (Node coverage) Every node of G belongs to at least one piece Vt .

• (Edge coverage) For every edge e of G, there is some piece Vt containing both ends of e.

4002 Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54

• (Coherence) Let t1, t2 and t3 be three nodes of T such that t2 lies on the path from t1 to t3. Then, if a node
v of G belongs to both Vt1 and Vt3 , it also belongs to Vt2 .

a b

c

d

efg

h

i

Is this graph tree-like?

a

b c

d e f

g h i

I draw it differently.

1

2

3

4

5
6

7

{a, b, c}

{b, c, d}

{c, d, e}

{g, h, d}
{d, e, h} {h, i, e}

{e, i, f}

Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54 4003

Here is a possible tree decomposition. Check the definition.

If the input graph G is a tree, we can even give a simple algorithm to compute a tree decomposition (T ,{Vt : t ∈
T}).

1. Define a node tv for each v ∈ G.

2. Define a node te for each e ∈ G.

3. T has an edge (tv , te) when v is an end of e in G.

4. Define the pieces Vtv = v for all tv and Vte = {u,v} for all e = (u,v).

{a}
ba

c

e

d

8
9

7

5

4

21

3

{c}

{b}

{d}

{e}

{a, c} {b, c}

{c, e}{d, e}
66

We will later see an algorithm to construct a TD for general graphs.

Properties of tree decompositions

First we will look at some properties of TDs. The three conditions in the definition of TD ensure that the collection
of pieces in the TD corresponds to G.

Node coverage and edge coverage ensure the ”existence” of all nodes and edges of G.

The coherence condition ensures tree-like separation properties (1) if you delete an edge e from a tree, it falls
apart into two connected components. 2) if you delete a node from a tree it corresponds to deleting all incident
edges.)

The coherence property is designed to guarantee that separations of T correspond to separations of G as well.

If T ′ is a subtree of T we use GT ′ to denote the subgraph of G induced by the nodes in all the pieces associated
with T ′, that is the set ∪t∈T ′Vt .

Consider deleting a node t ∈ T .

Theorem 1. Suppose that T − t has components T1, ... ,Td . Then the subgraphs

GT1−Vt ,GT2−Vt , ... ,GTd −Vt

have no nodes in common, and there are no edges between them.

Proof: Assume there is a node v that belongs to GTi −Vt and GTj −Vt for some j 6= i . Then, by the node coverage
property there must be pieces Vx with x ∈ Ti and Vy with y ∈ Tj . Since t lies on a x − y-path in T , it follows
from the coherence property that v ∈ Vt . Hence v belongs to neither GTi −Vt nor GTj −Vt .

4004 Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54

Now assume there is an edge e = (u,v) in G with u in GTi −Vt and v in GTj −Vt for some i 6= j . If there were
such an edge, then by the edge coverage property there must be a piece Vx containing both u and v . Obviously
x cannot be in both Ti and Tj .

Assume x /∈ Ti . But u is in GTi −Vt and hence in some piece Vy for y ∈ Ti . Then u belongs to both Vy and Vx

and since t lies on a x− y-path in T it follows by coherence that u ∈ Vt which again leads to a contradiction.

In a similar fashion you can prove the following theorem in which we assume the deletion of an edge e = (x ,y)
from T .

Theorem 2. Let X and Y be the two components of T after the deletion of the edge (x ,y). Then deleting the set
Vx ∩Vy from V disconnects G into the two subgraphs GX − (Vx ∩Vy) and GY − (Vx ∩Vy). More precisely, these
two subgraphs do not share any nodes, and there is no edge with one end in each of them.

Proof: (exercises).

Tree decompositions are useful in that the separation properties of T carry over to G. A this point one might
think that the key question is: Which graphs have tree decompositions?

However, this is not the point, because every graph has a TD (Why?).

The crucial point is rather whether there exists a TD in which all the pieces are small. This is really what we
try to carry over from trees, by requiring that the deletion of a very small set of nodes breaks the graph into
disconnected subgraphs.

So we now formally define:

Definition 3. The width of a TD (T ,{Vt}) is

width(T ,{Vt}) = max
t
| Vt | −1.

The tree-width of a graph G is the minimum width of any tree decomposition of G.

Note that all tree decompositions must have pieces with at least two nodes, and hence the minimum tree-width
is 1. (The −1 in the definition is somewhat arbitrary and ensures that a tree has tree-width 1).

Indeed the following holds:

Theorem 4. A connected graph G has tree-width 1 if and only if it is a tree.

Proof: exercise. Hint: Use the previous theorem.

Another useful observation is, that we can often reduce the number of pieces without changing the width of a
TD. If we see an edge (x ,y) ∈ T such that Vx ⊆ Vy , then we can contract the edge (x ,y) and obtain a smaller
TD with the same width (check our construction for the TD of a tree, it can be reduced in size).

Construction of a TD

Finally we turn to an algorithm that constructs a tree decomposition. The problem of determining the tree-width
of a graph is unfortunately NP-hard.

However, we are only interested in graphs were the tree-width is a small constant. For this case we will give an
algorithm with the following guarantee:

Given a graph G of tree-width less than w , it will produce a TD of G of width less than 4w in time O(f (w) ·mn),
where m and n are the number of edges and nodes of G and f (·) depends only on w .

First we define a local structure in a graph that is an obstacle for having a TD with small width. Our algorithm will
then either construct the desired TD, or it will detect the local substructure which implies that there is no TD of
small width.

Given two sets Y ,Z ⊆ V of the same size, we say they are separable if some strictly smaller set can completely
disconnect them. Specifically there is a set S ⊂ V and there is no path from Y −S to Z −S in G−S.

A set X of nodes in G is w-linked if | X |≥ w and X does not contain separable subsets Y and Z , such that
| Y |=| Z |≤ w .

Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54 4005

a

b c

d e f

g h i

In this graph the sets X = {g,d ,h,e} and Y = {h,e, i , f} are separable with S = {h,e}. The set X = {g,d ,h,e, i , f}
is 2− linked but not 3− linked .

The following fact will prove useful:

Theorem 5. Let G = (V ,E) have m edges, let X be a set of k nodes in G, and let w ≤ k be a given parameter.
Then we can determine whether X is w− linked in time O(f (k) ·m), where f (·) depends only on k. Moreover, if X
is not w− linked, we can return a proof of this in form of sets Y ,Z ⊆ X and S ⊂ V such that | S |<| Y |=| Z |≤ w
and there is no path from Y −S to Z −S in G−S.

Proof: Enumerate each pair of subsets Y ,Z . Since X has at most 2k subsets there are at most 4k such pairs.

We can determine whether Y and Z are separable checking whether there are l =| Y |=| Z | node-disjoint paths
each with one end in Y and one end in Z . This can be done by computing a flow with unit capacities in time
O(lm).

One should imagine a w-linked set as being self-entwinded. It has no small parts that can be easily split off from
each other.

We will use later the following theorem:

Theorem 6. If G contains a (w + 1)-linked set of size at least 3w, then G has tree-width at least w.

Proof: Suppose, by way of contradiction, that G has a (w + 1)-linked set X of size at least 3w , and it also has a
nonredundant TD (T ; {Vt}) of width less than w . The idea of the proof is to find a piece Vt that is ”centered”
with respect to X , so that when some part of Vt is deleted from G, one small subset of X is separated from
another.

(rest: exercise)

We give now a greedy algorithm for constructing a tree decomposition of low width. The algorithm will not
precisely determine that tree-width of the input graph G = (V ,E); rather, given w , either it will produce a TD of
width less than 4w , or it will discover a (w + 1)-linked set of size at least 3w .

In the latter case, this constitutes proof that the treewidth of G is at least w by applying the above theorem.

We start by assuming that there is now (w + 1)-linked set of size at least 3w . Then our algorithm will produce a
tree decomposition.

We will continously and greedily grow a set U ⊂ V in each step of our algorithm and maintain the property that
we have a partial tree decomposition. With partial TD we mean, that if U ⊆ V denotes the set of nodes of G
that belong to at least one of the pieces already constructed, then our current tree T together with all the pieces
constructed should form a TD on the subgraph of G induced by U.

Now we have to make sure that all the pieces have size at most 4w in order to achieve our goal of having a
treewidth of at most 4w .

4006 Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54

If C is a connected component of G−U, we say that u ∈ U is a neighbor of C if there is some node v ∈ C with
an edge to u. The key behind the algorithm is not simply to maintain a partial TD of width less than 4w , but also
to make sure that following invariant (*) is enforced the whole time:

At any stage of the execution of the algorithm, each component C of G−U has at most 3w neighbors, and
there is a single piece Vt that contains all of them.

Now we describe how to add a new node and a new piece so that we still have a partial TD, the invariant (*) is
fulfilled, and U has grown strictly larger. (The code is without the enclosing loop).

(1) greedyTDcore(G,w);
(2) choose arbitrarily v ∈ G;
(3) U = {v}; insert t into T ; Vt = {v};
(5) let C1,C2, ... ,Ck be the connected comp. of G−U;
(6) choose arbitrarily a Cj ;
(7) Xj = {u ∈ U | u is a neighbor of a v ∈ Cj};
(8) Vt = the piece in T that contains all of Xj ;
(9) if | Xj |< 3w

(10) then
(11) choose a v ∈ Cj that neighbors Xj ;
(12) U = U ∪{v}; insert s into T ; Vs = X ∪{v};
(13) add edge in T from t to s;
(14) else // | Xj | is exactly 3w
(15) if Xj is a (w + 1)-linked set
(16) then output G has tree width at least w ;
(17) else proceed using proof of not being (w + 1)-linked;
(18) fi
(19) fi

Lets compute a TD for our initial example graph of treewidth 2 and lets see what the greedy algorithm comes up
with.

Now suppose, the graph does not fall apart and X has exactly 3w nodes. In this case it is less clear how to
proceed. If we add an additional node of a connected component C to X and end up with a component that has
all nodes of X as neighbors, then the invariant (*) is violated.

There is no simple way around this. G might actually not have a low tree width. Hence it makes sense to ask
whether X is a (w + 1)-linked set. Using the previous theorem we can determine this in time O(f (w) ·m) since
| X |= 3w .

If X is a (w + 1)-linked set then we are done, since G has then tree-width of at least w , which is an acceptable
output of our algorithm.

If X is not (w + 1)-linked, then we end up with Y ,Z ⊆ X and S ⊆ V such that | S |<| Y |=| Z |≤ w + 1 and there
is no path from Y −S to Z −S in G−S. The sets Y ,Z and S will now provide us with a means to extend out
partial TD.

Let S′ consist of the nodes in S that lie in Y ∪Z ∪C. We observe that S′∩C is not empty. (Y and Z each have
edges into C, and so if S′∩C were empty, there would be a path from Y −S to Z −S in G−S that started in
Y , jumped into C, traveled through C and jumped back into Z .) Also | S′ |≤| S |≤ w .

We define a new piece Vs = X ∪S′, making s a leaf of t . All the edges from S′ into U have their ends in X and
| X ∪S′ |≤ 3w + w = 4w , so we still have a partial TD. Moreover, the set U has grown, since S′∩X 6= /0. So we
are done when we can show that our invariant (*) still holds.

Our partial TD now covers U ∪S′; and where we previously had a component C of G−U, we now may have
several components C′ ⊆ C of G− (U∪S′). Each of these components C′ has all its neighbors in X ∪S′. So we
must make sure that there are at most 3w such neighbors.

Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54 4007

Consider one such component C′. We claim that all of its neighbors in X ∪S′ actually belong to one of the two
subsets (X −Z)∪S′ or (X −Y)∪S′, and each of these sets has size at most | X |≤ 3w .

For, if this did not hold, then C′ would have a neighbor in both Y −S and Z −S contradicting the construction of
the sets. Hence it holds and hence (*) still holds after the addition of the new set.

Using TD in Bioinformatics: An example

Cai and colleagues employ TD in a number of bioinformatics problems. To show you its use in a real world
example we present their paper:

Rapid ab initio RNA Folding Including Pseudoknots via Graph Tree Decomposition.

We start by giving an introduction to the problem, give the formal definition in terms of graphs (the problem can
be reduced to the weighted independent set problem), and give an algorithm to compute an optimal solution.

The standard algorithms for computing an RNA folding with minimum free energy are by Zuker or use McGaskill’s
partition function (see script ”Algorithmic Bioinformatics”).

Basically they compte a loop decomposition where the individual loops are weighted by an energy term. Howe-
ver, these algorithms do not assume the presence of pseudoknots.

RNA secondary structure

Unlike DNA, RNA is single stranded. However, complementary bases C−G and A−U form stable base pairs with
each other using hydrogen bonds. These are called Watson-Crick pairs. Additionally, one sometimes considers
the weaker U−G wobble pairs. These are all called canonical base pairs. Wobble base pairs have one hydrogen
bond less than G−C base pairs.

Guanine-Cytosine Adenine-Uracil Uracil-Cytosine

(source: Lyngsø)

When base pairs are formed between different parts of a RNA molecule, then these pairs are said to define the
secondary structure of the RNA molecule. Here is the secondary structure of a tRNA:

4008 Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54

This particular tRNA is from yeast and is for the amino acid phenylalanine.

(source: http://www.blc.arizona.edu/marty/411/Modules/ribtRNA.html)

The three dimensional structure is much less packed than that of a protein:

Nested structures and pseudoknots

Usually only nested secondary structures are considered, as the more complicated non-nested structures imply
computationally harder problems.

(e,f)

fi jk l e g h

(k,l)
(g,h)(i,j)

Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54 4009

Here, the interactions (i , j) and (g,h) are not nested.

Interactions that are not nested give rise to a pseudoknot configuration in which segments of sequence are
bonded in the “same direction”, or have a three dimensional contact.

pseudoknot
unknotted

pseudoknot

Practical approaches to cope with the computational challenge posed by pseudoknots are either to restrict the
class of pseudoknots under consideration or to employ heuristics in the algorithms.

Optimal algorithms for restricted pseudoknot classes are usually thermodynamics-based extensions of Zuker’s
algorithm for the prediction of pseudoknot-free structures. In such algorithms, the predicted optimal structure
of a single RNA sequence is the one with the global minimum free energy based on a set of experimentally
determined parameters.

Among these algorithms, PKNOTS can handle the widest classes of pseudoknots. However, its time complexity
O(n6) makes it infeasible to fold RNA sequences of a moderate length. The computational efficiency may be
improved at the cost of further restricting the structure of pseudoknots, but still with a time complexity O(n5) or
O(n4).

Another drawback of most such algorithms is that they produce only the optimal solution, while suboptimal ones
that may reveal the true structure are often ignored.

On the other hand, computationally efficient heuristic methods have also been explored to allow unrestricted
pseudoknot structures.

Iterated loop matching (ILM) is one such method. It finds the most stable stem, adds it to the candidate secondary
structure and then masks off the bases forming the stem and iterates on the remaining sequence segments until
no other stable stem can be found. One structure is reported at the end.

Another algorithm, HotKnots, does the prediction in a slightly different way. It keeps multiple candidate structures
rather than only one and builds each of them in a similar but more elaborate way.

These methods can usually be fast, yet they often do not provide an optimality guarantee for the predicted
structure or a quality measure on the predicted structure with respect to the optimal structure. Other heuristic
methods based on genetic algorithms and Monte Carlo simulation usually do not address the optimality issue
either.

Problem definition

A (canonical) base pair is either a Watson-Crick pair (A-U or C-G) or a wobble pair G-U. A stem is a set of
stacked nucleotide base pairs on an RNA sequence s. In general a stem S can be associated with four positions
(i l , j l , i r , j r), where i l < j l < i r < j r , on the sequence s such that

1. (s[i l],s[j r]) and (s[j l],s[i r]) are two canonical base pairs; and

4010 Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54

2. for any two base pairs (s[x],s[y]), (s[z],s[w]) in the stem S, either i l ≤ x < z ≤ j l and i r ≤ w < y ≤ j r , or
i l ≤ z < x ≤ j l and i r ≤ y < w ≤ j r .

Region s[i l ..j l] is the left region of the stem and s[i r ..j r] is the right region of the stem. Stem S is stable if the
formation of its base pairs allows the thermodynamic energy ∆(S) of the stem to be below a predefined threshold
parameter E < 0.

The following table shows all the stable stems in Ec_Pk4 with E = −5kcal/mol , the fourth pseudoknot in E.coli
tmRNA, and their corresponding free energy values.

ID L R En
1 1..10 27..36 −12.4
2 5..10 47..52 −7.8
3 1..7 34..40 −6.8
4 9..12 22..25 −6.2
5 10..13 27..30 −5.5
6 11..14 19..22 −5.4
7 12..14 23..25 −5.4
8 23..25 35..37 −5.4
9 15..18 30..33 −5.3
10 27..29 34..36 −5.3

A stem graph G = (V ,E) can be defined for the RNA sequence s, where each vertex in V uniquely represents
a stable stem on s, and E contains an edge between two vertices if and only if the corresponding two stems
(a,b,c,d) and (x ,y ,z,w) conflict in their positions, i.e., one or both of the regions s[a..b] and s[c..d] overlap with
at least one of the regions s[x ..y] and s[z..w].

The following Figure shows the stem graph for Ec_Pk4 constructed according to the stable stems given in the
above table together with a TD. The stem graph is a weighted graph, with a weight on every vertex. Usually,
the weight of a vertex can simply be the absolute value of the thermodynamic energy ∆(S) of the stem S
corresponding to the vertex.

10

1

9

6

78

2

3 4 5

1, 2, 3, 5, 8

1, 5, 91, 2, 4, 5, 8

1, 3, 5, 8, 10

4, 5, 7, 8

4, 5, 6, 7

The problem of predicting the optimal structure of the RNA then corresponds to finding a collection of non-
conflicting stems from its stem graph which achieves the maximum total weight.

This is exactly the same as the graph theoretic problem: finding the maximum WIS in the stem graph. Note the
weight for an IS representing a secondary structure is based on the total energies of the stems only (similar
models were previously adopted by both primitive methods and more elaborate ones).

Identifying stable stems

Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54 4011

Stable stems are defined according to a set of parameters. In particular, a stem contains at least P base pairs;
the loop length in between the left and right region of the stem is at least L; the thermodynamic energy is at most
E .

Bulges within a stem are allowed, for which the stem essentially becomes a set of substems separated by the
bulges. In addition, parameter T limits the minimum substem length, and parameter B limits the maximum bulge
length.

Identifying stable stems

The thermodynamic energy ∆(S) of stem S is calculated by taking into account both the stacking energies and
the destabilizing energies caused by bulges.

The stable stem pool can be extended by introducing maximal substems that can resolve the conflicts and meet
the requirements defined by the above parameters for each pair of overlapping stems in the pool.

Maximum WIS can be used via TD (see chapter 10.4 of Kleinberg, Tardos). We will give this algorithm now
instead of the one described by Cai.

To understand the algorithm we first have to see how computing a WIS works if the input is a tree. This can be
easily done by dynamic programming. We construct subproblems by rooting the tree at an arbitrary node r . We
start then at the leaves and work our way up the tree.

We observe that we need to distinguish two cases in order to obtain a maximum WIS S for the tree Tu. Either
we include node u in S or we do not.

If we include u we cannot include any of its children. If we do not include u we have the freedom to include or
omit these children. This suggests that we use two tables in our DP.

The subproblem optin(u) will denote the maximum weight of an IS of Tu including u and optout (u) will denote the
maximum weight of an IS of Tu that does not include u.

It should be clear that following code solves the problem:

(1) WIS(T);
(2) root the tree at a node r ∈ T ;
(3) for all nodes u of T in post-order
(4) do if u is a leaf
(5) then Mout [u] = 0; Min[u] = wu;
(6) else
(7) Mout [u] = ∑v∈children(u) max(Mout [v],Min[v]);
(8) Min[u] = wu + ∑v∈children(u) Mout [v];
(9) fi

(10) od

Now we will see how we make use of our TD to compute a maximum WIS on a graph and therefore can solve
the RNA folding problem.

The algorithm for computing the WIS on a TD (T ,{Vt}) is very similar to the one one that works on a tree. We
root the tree T and built an independent set by considering the pieces Vt from the leaves upward. At an internal
node t of T we confront the following basic question:

The optimal WIS intersects the piece Vt in some subset U, but we do not know which set U it is. So we enumerate
all possibilities for U. That is in all 2w+1 possibilities to consider.

Lets be more precise. We root T at the node r . For any node t let Tt denote the subtree rooted at t . Recall that
GTt denotes the subgraph of G induced by the nodes in all pieces associated with nodes in Tt . As notation we
also use Gt . For a subset U of V , we use w(U) to denote the total weight of nodes in U.

We define a set of subproblems for each subtree Tt , one corresponding to each possible subset U of Vt that

4012 Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54

represents the intersection of the optimal solution with Vt . Thus for each independent set U ⊆ Vt , we write ft (U)
to denote the maximum weight of an independent set S in Gt , subject to the requirement that S∩Vt = U.

The quantity ft (U) is undefined if U is not an IS, since in this case we know that U cannot represent the intersec-
tion of the optimal solution with Vt .

There are at most 2w+1 subproblems associated with each node t ∈ T . We can assume that we are working with
a TD of at most n pieces, and hence there are a total of at most 2w+1n subproblems overall.

Clearly we can determine the maximum weight of an IS in G by looking at the solutions of all the subproblems
associated with the root r . We simply take the maximum over all independents sets U ⊆ Vr of fr (U).

Now we show how to build up the solutions to all subproblems via a recurrence. When t is a leaf ft (U) is equal
to w(U) for each independent set U ⊆ Vt .

Now suppose t has d children t1, ... , td , and we have already determined the values fti (W) for each child ti and
each IS W ⊆ Vti . How do we determine the value of ft (U) for an IS U ⊆ Vt ?

Let S be the maximum weight IS in Gt subject to the requirement that S∩Vt = U, that is, w(S) = ft (U).

The key is to understand how S looks when intersected with each of the subgraphs Gti . Let Si denote the
intersection of S with the nodes of Gti .

Then the following holds:

Theorem 7. Si is a maximum weight IS of Gti subject to the constraint that Si ∩Vt = U ∩Vti .

Proof: Suppose there were an IS S′i of Gti with the property that S′i ∩Vt = U ∩Vti and w(S′i) > w(Si). Then
consider the set S′ = (S−Si)∪S′i . Clearly w(S′) > w(S). Also it is easy to check that S′∩Vt = U.

We claim that S′ is an IS in G. This will contradict our choice of S as the maximum weight IS in Gt subject
to S∩Vt = U. For suppose S′ is not independent, and let e = (u,v) be an edge with both ends in S′. It cannot
be that u and v both belong to S, or that they both belong to S′i , since those are both IS. Thus we must have
w.l.o.g. u ∈ S−S′i and v ∈ S′i −S, from which follows that u is not a node of Gti while v ∈ Gti − (Vt ∩Vti). But
then, since we have a TD, the separation theorems hold and by the edge separation theorem there cannot be an
edge joining u and v . Hence our assumption must have been wrong.

The above theorem is exactly what we need to design our recurrence for the subproblems. It says, that the
information needed to compute ft (U) is implicit in the values already computed in the subtrees.

Specifically, for each child ti , we need simply determine the value of the maximum weight IS Si of Gti , subject
to the constraint that Si ∩Vt = U ∩Vti . This constraint does not completely determine what Si ∩Vt should be,
rather, it says that it can be any IS Ui ⊆ Vti such that Ui ∩Vt = U∩Vti . Thus the weight of the optimal Si is equal
to

max{fti (Ui) : Ui ∩Vt = U ∩Vti and Ui ⊆ Vti is ind.}

Finally the value of ft (U) is simply w(U) plus these maxima added over the d children, except that to avoid
overcounting of nodes in U, we exclude them from the contribution of the children. Thus we have:

ft (U) = w(U) +
d

∑
i=1

max{fti (Ui)−w(Ui ∩U) :

Ui ∩Vt = U ∩Vti and Ui ⊆ Vti is ind. }

On the next slide we see the pseudocode.

For each of the d children ti , and for each IS Ui in Vti , we spend time O(w) checking if Ut ∩Vt = U ∩Vti , to
determine whether it should be considered. This is a total time of O(2w+1wd) for ft (U). Since there are at most
2w+1 sets U associated with t , the total time spend on node t is O(4w+1wd).

Finally, if we sum this over all nodes t to get the total running time. Observe that the total number of children is
n. Hence the total running time is O(4w+1wn).

An example

Tree decomposition and its uses, by Knut Reinert, 31. Oktober 2011, 09:54 4013

(1) WIS((T ,{Vt}));
(2) modify the TD to make it nonredundant;
(3) root the tree at a node r ∈ T ;
(4) for all nodes t of T in post-order
(5) do if t is a leaf
(6) then for each IS U of Vt do
(7) ft (U) = w(u);
(8) od
(9) else for each IS U of Vt do

(10) ft (U) = determined as in above theorem;
(11) od
(12) fi
(13) od
(14) return max{fr (U) : U ⊆ Vr is ind.};

Consider the example from the lecture.

An example

In conclusion, the implementation of the above algorithm has outperforms in quality some programs and is
comparable to the best one (PKNOTS). However, it is much faster than PKNOTs.

