
Discrete Math for Bioinformatics WS 11/12: , by A. Bockmayr/K. Reinert, 31. Oktober 2011, 09:53 3001

Skip lists: A randomized dictionary
The exposition is based on the following sources, which are all recommended reading:

1. Pugh: Skip lists: a probabilistic alternative to balanced treed. Proceedings WADS, LNCS 382, 1989, pp.
437-449

2. Sedgewick: Algorithmen in C++, 2002, Pearsons, (Chapter 13.5)

3. Lecture Script from Michiel Smid, University of the Saarland.

4. Motwani, Raghavan: Randomized algorithms, Chapters 8.3 and 4.1

5. Kleinberg, Tardos: Algorithm design, Chapter 13.9

Introduction

Here a little refresher of sum formulas you will need:

(x + y)n =
n

∑
k=0

(
n
k

)
xk · yn−k

and for 0 < r < 1:
n

∑
k=0

r k =
1− rn+1

1− r

∞

∑
k=0

r k =
1

1− r

Introduction

We consider the so called dictionary problem. Given a set S of real numbers, store them in a data structure such
that the following three opertions can be performed efficiently:

• Search(x): Given the real number x , report the maximal element of S∪{−∞} that is at most equal to x .

• Insert(x): Given a real number x insert it into the data structure.

• Delete(x): Given a real number x delete it from the data structure.

The standard data structures for this problem is the balanced binary tree. It supports all the above operations in
worst case time O(logn) and uses O(n) space.

Well known classes of balanced trees are for example AVL-trees, BB[α]-trees and red-black-trees. In order to
maintain their worst case time behaviour all those data structures need more or less elaborate rebalancing
operations which make an implementation non-trivial, which in turn leads not to the best practical run times.

We will introduce in this lecture an alternative, randomized data structure, the skip list. It uses in expectation
linear space and supports the above dictionary operation in expected time O(logn) with high probability.

Why do we do this? We will see that the data structure is conceptually much simpler and more elegant than
balanced trees. Nevertheless we will exchange a worst case runtime against an expected run time.

However, the analysis will show that skip lists behave very well and are very fast in practice (the difference is
similar to the deterministic merge sort and the randomized quicksort algorithm).

The goal of this lecture is to

3002 Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53

• introduce you to the data structure

• show you how to analyze the randomized run time

• introduce you to tail estimates using Chernoff bounds.

Skip lists

Throughout the lecture we assume that we can generate random, independent bits in unit time. Let S be a set
of n real numbers. Then we construct a sequence of sets S1,S2, ... as follows:

1. For each element x ∈ S, flip a coin until zero comes up.

2. For each i ≥ 1, Si is the set of elements in S for which we flipped the coin at least i times.

Let h be the number of sets that are constructed. Then it is clear that

/0 = Sh ⊆ Sh−1 ⊆ Sh−2 ⊆ ·· · ⊆ S2 ⊆ S1 = S

The skip list for S consists then of the following:

1. For each 1≤ i ≤ h, the elements of Si ∪{−∞} are stored in a sorted linked list Li .

2. For each 1 < i ≤ h, there is a pointer from each x ∈ Li to its occurrence in Li−1.

Here is an example. Suppose S = {1,2,5,7,8,9,11,12,14,17,19,20}. Flipping coins might lead to S1 = S, S2 =
{1,2,5,8,11,17,20}, S3 = {2,5,11,20}, S4 = {11}, and S5 = /0.

Searching skip lists

We can now implement the search for x as follows:

1. Let yh be the only element in Lh.

2. For i = h,h−1, ... ,2

(a) Follow the pointer from yi in Li to its occurence in Li−1.

Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53 3003

(b) Starting in yi−1, walk to the right along Li−1, until an element is reached that is larger than x or the
end of Li−1 is reached. Let now yi−1 be the last encountered element in Li−1 that is at most equal to
x .

3. Output y1.

The following figure illustrates the search step (we search for element 10):

It is not hard to imagine how the insertion and deletion operations work on a skip list.

Inserting into a skip list

For inserting an element x into the dictionary we proceed as follows:

1. Run the search algorithm for x . Let y1,y2, ... ,yh be the elements of L1,L2, ... ,Lh that are computed while
searching. If x = y1, the x ∈ S and nothing has to be done. Hence assume that x 6= y1.

2. Flip a coin until a zero comes up. Let l be the number of coin flips.

3. For each 1≤ i ≤min(l ,h), add x to the list Li immediately after yi .

4. If l ≥ h, then create new lists Lh+1, ... ,Ll+1 storing the sets Sh+1∪{−∞}, where each set contains x except
for Sl+1 which is empty.

5. For each 1 < i ≤ l , give x in Li a pointer to its occurrence in Li−1.

6. If l ≥ h, then for each h + 1≤ i ≤ l + 1, give −∞ in Li a pointer to its occurrence in Li−1.

7. Set h = max(h, l + q).

3004 Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53

Deleting from a skip list

1. Run the search algorithm for x . Let y1,y2, ... ,yh be the elements of L1,L2, ... ,Lh that are computed while
searching. If x 6= y1, the x /∈ S and nothing has to be done. Hence assume that x = y1.

2. For each 1≤ i ≤ h such that x = yi delete yi from the list Li .

3. For i = h,h−1, ...: if Li−1 only stores −∞, delete the list Li and set h = h−1.

Why are skip lists efficient? The intuition

We have seen, that mostly what we do in skip lists is to search. The rebalancing is done by throwing a coin a
few times and making local changes along the search path.

How expensive is the search? It is the sum over all traversed path length at each level. We expect there to be
≈ logn levels. At each level we travel to the right. However for a fixed level we do not expect to do this long, since
this would imply, that all the elements are not in the level above.

Hence we expect to spend a constant amount of time at each level which would add up to a total search time of
O(logn). We will now prove this more formally.

Why are skip lists efficient? The proofs

The size of a skip list and the running times of the search and update algorithms are random variables. We will
prove that their expected values are bound by O(n) and O(logn) respectively.

Recall that h denotes the number of sets Si that result from our probabilistic construction. How can we derive an
upper bound for h?

Let x be an element of S and h(x) be the number of sets Si that contain x . Then h(x) is a random variable
distributed acccording to a geometric distribution with p = 1/2. Hence Pr (H(x) = k) = (1/2)k and E(h(x)) = 2.
That means if we look at a specific element we only expect it to be in S1 and S2.

Clearly h = 1+max{h(x) : x ∈S}. From E(h(x)) = 2 for any x ∈S, however, we cannot conclude that the expected
value of h is three.

We can estimate E(h) as follows. Again consider a fixed x ∈ S. It follows that for any k ≥ 1, h(x)≥ k if and only
if the first k −1 coin flips produced a one. That is Pr (h(x)≥ k) = (1/2)k−1. In addition it is clear that h ≥ k + 1 if
and only if there is a x ∈ S such that h(x)≥ k . Hence

Pr (h ≥ k + 1)≤ n ·Pr (h(x)≥ k) =
n

2k−1

This estimate does not make sense for k < 1 + logn. For those values of k we can use the trivial upper bound
Pr (h ≥ k + 1)≤ 1. Then E(h) equals:

∞

∑
k=0

Pr (h ≥ k + 1) =
dlogne

∑
k=0

Pr (h ≥ k + 1) +
∞

∑
k=1+dlogne

Pr (h ≥ k + 1).

(exercise: proof the first equality, that is E(X) = ∑
∞
k=1 Pr (X ≥ k) for a random variable X that takes values

{0,1,2, ...}.)
The first summation on the right hand side is at most 1 + dlogne. The second sum can be bounded from above
by:

∞

∑
k=1+dlogne

n
2k−1 = n(1/2)dlogne−1 ≤ n(1/2)logn−1 ≤ 2.

Hence we have proven that E(h)≤ 3 + dlogne.

Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53 3005

The expected size of a skip list can easily be computed. Let M denote the total size of the sets S1,S2, ... ,Sh.
Then M = ∑x∈S h(x) and by linearity of expectation:

E(M) = ∑
x∈S

E(h(x)) = ∑
x∈S

2 = 2n.

If M ′ denotes the total number of nodes in a skip list, then M ′ is equal to M plus h. Hence

E(M ′) = E(M + h) = E(M) + E(h)≤ 2n + 3 + dlogne.

What is left to do is to estimate the search costs.

Let x be a real number and let Ci denote the number of elements in the list Li that are inspected when searching
for x (We do not count the element of Li at which the algorithm starts walking to the right. Hence, Ci counts
comparisons between x and elements of S.) The search cost is then proportional to ∑

h
i=1(1 + Ci).

Again we cannot use linearity of expectation since h is a random variable. Again the trick is to fix an integer A
and analyze the search cost up to a level A and above level A separately (and differently).

We first estimate the search level above A, i.e., the total costs in the lists LA+1,LA+2, ... ,Lh. Since the cost is at
most equal to the total size of these lists, its expected value is at most equal to the expected value of MA :=
∑

h
i=A+1 | Li |.

How do we estimate this value? We first note that the lists Li , A + 1 ≤ i ≤ h, form a skip list for SA+1. Hence we
have:

E(MA) =
n

∑
k=0

E(MA | | SA+1 |= k) ·Pr (| SA+1 |= k)

where E(MA | | SA+1 |= k) is the expected size of a skip list with k elements. We have already seen that this is
O(k).

Hence we only need to compute Pr (| SA+1 |= k). Since | SA+1 |= k if and only if out of the n elements of S exactly
k reach the level A + 1, we have:

Pr (| SA+1 |= k) =

(
n
k

)
(
1
2

)Ak (1− (
1
2

)A)n−k .

Setting p = 1
2

A
, we infer that the expected value of MA is proportional to:

n

∑
k=0

k ·
(

n
k

)
pk (1−p)n−k =

n

∑
k=1

n ·
(

n−1
k−1

)
pk (1−p)n−k

= n ·p
n−1

∑
k=0

(
n−1

k

)
pk (1−p)n−1−k

= n ·p(p + (1−p))n−1

= n ·p

Hence the expected search cost above level A is bounded by O(n/2A).

Next we estimate the expected search cost in the lists L1,L2, ... ,LA. Recall that Ci is the number of elements
searched when searching for x . We use again conditional expectation. Let li (x) be the number of elements in Li

that are at most equal to x . Then

E(Ci) =
n

∑
k=1

E(Ci | li (x) = k) ·Pr (li (x) = k).

Assume that li (k) = k . Also assume that there is an element in Li that is larger than x .

3006 Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53

Then Ci = j if and only if the largest j−1 elements of Li that are at most equal to x do not appear in Li+1, but the
element that immediately precedes these j−1 elements does appear in Li+1.

Hence

Pr (Ci = j | li (x) = k)≤ (
1
2

)j−1, 0≤ j ≤ k .

This inequality also holds if x is at least equal to the maximal element of Li . From this we obtain:

E(Ci | li (x) = k) =
k

∑
j=0

j ·Pr (Ci = j | li (x) = k)

≤
k

∑
j=0

j
2j−1

≤ 4.

(exercise. Hint: write the sum ∑
k
j=0 j · x j−1 as a derivative of ∑

k
j=0 x j , apply bounding)

This, in turn implies that

E(Ci)≤
n

∑
k=1

4 ·Pr (li (x) = k) = 4

It follows that the expected search cost up to level A is proportional to:

E(
A

∑
i=1

(1 + Ci)) =
A

∑
k=1

(1 + E(Ci))≤ 5A

Summarizing we have shown that the expected search time for element x is bounded by:

O(
n
2A + A).

Setting A to logn we obtain the required bound of O(logn).

Tail estimates: Chernoff bounds

So far we proved bounds on the expected size, search time and update time for a skip list. In this section we
conder so called tail estimates.

That is, we estimate the probability that the actual search time deviates significantly from its expected value. For
example assume for a moment that the constant in the O(logn) term for the search time is one. Then we want
to estimate the probability that the actual search time is at least t · logn.

We could derive an estimate using Markov’s inequality.

Lemma 1. Let X be a random variable that takes non-negative values, and let µ be the expected value of X .
Then for any t > 0, Pr (X ≥ tµ)≤ 1

t .

Proof: Let s = tµ. Then

µ = ∑
x

x ·Pr (X = x) (3.1)

≥ ∑
x≥s

x ·Pr (X = x)

≥ ∑
x≥s

s ·Pr (X = x)

= s ·Pr (X ≥ s)

Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53 3007

Hence the probability that the actual search time is at least t · logn is less than or equal to 1/t .

This is not very impressive. The probablity that the search time is more than 100 times its expected value is
at most 1/100. So if this bounds was tight one search in a hundred takes more than 100 times the time of the
average search.

In this section we will see that Chernoff bounds give a much tighter estimate. We will prove that the probablity
that the search time exceeds t · logn is less than or equal to ≈ n−t/8 for t ≥ 5.

Hence in a skip list of 1000 elements, the probability that the search time is more than 100 times its expected
value is 10−38 which in practice means, it will never occur. (Even for t = 50 the bound is still 10−19, and for t = 10
the probability is still only ≈ 2 ·10−4).

Markov’s inequality holds for any non-negative random variable. The Chernoff technique applies to random
variables X that can be written as the sum ∑

n
i=1 Xi of mutually independent random variables Xi .

(Variables are called (mutually) independent if their joint density function is the product of the individual density
functions. Beware that mutual independence is different than pairwise independence! (exercise)).

In such cases much better bounds can be obtained.

So let X1,X2,X3 ... ,Xn be a sequence of mutually independent random variables and let X = ∑
n
i=1 Xi .

The moment generating function (mgf) for a (discrete) random variable Y is defined as

mY (λ) = E(eλY) = ∑
y

eλy ·Pr (Y = y)

As the name suggests the function is used to easily generate the moments of the random variable Y . Clearly
m(0) = 1 and it is easy to show that µ = m′(0) and σ2 = m′′(0)−µ2 (exercise).

In the case of X , which is a sum of n independent variables, mX (λ) = ∏
n
i=1 mXi (λ) and of course the mean value

of X is the derivate of the mgf at position 0 which is simply the product of all means of the Xi .

Or written down:

E(eλX) = E(eλ(X1+···+Xn)) =
n

∏
i=1

E(eλXi).

Now let s > 0 and λ > 0. Since X ≥ s if and only if eλX ≥ eλs, we have Pr (X ≥ s) = Pr (eλX ≥ eλs). By applying
Markov’s inequality to the non negative random variable eλX , we get

Pr (X ≥ s) = Pr (eλX ≥ eλs)≤ e−λs ·E(eλX).

This yields:

Pr (X ≥ s)≤ e−λs ·
n

∏
i=1

E(eλXi), for s > 0 and λ > 0.

This is the basic inequality we work with. To estimate Pr (X ≥ s) we need bound on E(eλXi). Of course those
bounds depend on the probability distribution of Xi . We will now illustrate the technique using the geometric
distribution with parameter p = 1/2.

Let T be the number of flips we need until a one comes up in a series of coin flips. Then Pr (T = k) = (1/2)k for
k ≥ 1 and E(T) = 2. Now assume we are interested in Tn which is the number of flips we need until we obtain a
one exactly n times (i.e. T = T1).

If we define the random variables Xi as the number of flips between the (i − 1)−st (excluding) and the i-th
one (including), then Xi is distributed according to a geometric distribution. (This property is also called the
memoryless property of the geometric or exponential distribution).

Then Tn = ∑
n
i=1 Xi , where each Xi is distributed according to a geometric distribution and the expected value is

E(Tn) = 2n, and Markov’s inequality gives Pr (Tn ≥ (2 + t)n ≤ 2
2+t).

For 0 < λ < log2 we have

E(eλXi) =
∞

∑
k=1

eλk ·Pr (Xi = k) =
∞

∑
k=1

(eλ/2)k =
eλ

2−eλ

3008 Skiplists: A randomized dictionary, by Knut Reinert, 31. Oktober 2011, 09:53

We now apply our basic inequality with s = (2 + t)n, where t > 0 and get

Pr (Tn ≥ (2 + t)n)≤ e−λ(2+t)n(
eλ

2−eλ
)n = (

e−λ(1+t)

2−eλ
)n

Now we choose λ such that the term on the right hand side is minimized (exercise) and find λ = log(1 + t
2+t).

Hence we have
Pr (Tn ≥ (2 + t)n)≤ (1 + t/2)n(1− t

2 + 2t
)(1+t)n.

Since 1− x ≤ e−x for all x , we have

(1− t
2 + 2t

)1+t ≤ (e
−t

2+2t)1+t = e−t/2.

Moreover, 1 + t/2≤ et/4 for t ≥ 3. This proves that for t ≥ 3

Pr (Tn ≥ (2 + t)n)≤ etn/4 ·e−tn/2 = e−tn/4.

Compare this with the bound obtained from Markov’s inequality (which was 2
2+t)!

We can subsume our finding in the following theorem:

Theorem 2. Let X1,X2, ... ,Xn be mutually indpendent random variables and assume that each Xi is distributed
according to a geometric distribution. Let Tn = ∑Xi , then E(Tn) = 2n and for any t ≥ 3 holds:

Pr (Tn ≥ (2 + t)n)≤ etn/4 ·e−tn/2 = e−tn/4.

Corollary 3. Let c ≥ 1 be a constant and let m be a positive integer. Further let n = c · lnm. Then for any s ≥ 5
it holds

Pr (Tdne ≥ sn)≤m
−(s−2)c

4 .

