
Discrete Math for Bioinformatics WS 11/12: , by A. Bockmayr/K. Reinert, 20. Oktober 2011, 12:16 1001

Concept: Types of algorithms
The exposition is based on the following sources, which are all required reading:

1. Corman, Leiserson, Rivest: Chapter 1 and 2.

2. Motwani, Raghavan: Chapter 1.

In this lecture we will discuss different ways to categorize classes of algorithms. There is no one ”correct”
classification. One should regard the task of categorizing algorithms more as giving them certain attributes.

After discussing how a given algorithm can be labeled (e.g. as a randomized, divide-and-conquer algorithm) we
will discuss different techniques to analyze algorithms. Usually the labels with which we categorized an algorithm
are quite helpful in choosing the appropriate type of analysis.

Deterministic vs. Randomized

One important (and exclusive) distinction one can make is, whether the algorithm is deterministic or randomized.

Deterministic algorithms produce on a given input the same results following the same computation steps. Ran-
domized algorithms throw coins during execution. Hence either the order of execution or the result of the algo-
rithm might be different for each run on the same input.

There are subclasses for randomized algorithms. Monte Carlo type algorithms and Las Vegas type algorithms.
A Las Vegas algorithm will always produce the same result on a given input. Randomization will only affect the
order of the internal executions.

In the case of Monte Carlo algorithms, the result may might change, even be wrong. However, a Monte Carlo
algorithm will produce the correct result with a certain probability.

So of course the question arises: What are randomized algorithms good for? The computation might change
depending on coin throws. Monte Carlo algorithms do not even have to produce the correct result.

Why would that be desirable?

The answer is twofold:

• Randomized algorithms usually have the effect of perturbing the input. Or put it differently, the input looks
random, which makes bad cases very seldom.

• Randomized algorithms are often conceptually very easy to implement. At the same time they are in run
time often superior to their deterministic counterparts.

Can you think of an obvious example? We will come to the example later on in more detail.

Offline vs. Online

Another important (and exclusive) distinction one can make is, whether the algorithm is offline or online.

Online algorithms are algorithms that do not know their input at the beginning. It is given to them online, whereas
normally algorithms know their input beforehand.

What seems like a minor detail has profound effects on the design of algorithms and on their analysis. Online
algorithms are usually analyzed by using the concept of competitiveness, that is the worst case factor they take
longer compared to the best algorithm with complete information.

One example for an online problem is the ski problem.

1002 Concept: Types of algorithms and algorithm analyses, by Knut Reinert, 20. Oktober 2011, 12:16

A skier must decide every day she goes skiing, whether to rent or to buy skis, unless or until she decides to
buy them. The skier does not know how many days she can ski, because the whether is unpredictable. Call the
number of days she will ski T . The cost to rent skis is 1 unit, while the cost of buying skis is B.

What is the optimal offline algorithm minimizing the worst case cost?

And what would be the optimal strategy in the online case?

Exact vs approximate vs. heuristic vs. operational

Usually algorithms have an optimization goal in mind, e.g. compute the shortest path or the alignment or minimal
edit distance. Exact algorithms aim at computing the optimal solution given such a goal. Often this is quite
expensive in terms of run time or memory and hence not possible for large input.

In such cases one tries other strategies. Approximation algorithms aim at computing a solution which is for
example only a certain, guaranteed factor worse than the optimal solution, that means an algorithm yields a
c− approximation, if it can guarantee that its solution is never worse than a factor c compared to the optimal
solution.

Alternatively, heuristic algorithms try to reach the optimal solution without giving a guarantee that they always
do. Often it is easy to construct a counter example. A good heuristics is almost always near or at the optimal
value.

Finally there are algorithms which do not aim at optimizing an objective function. I call them operational since
they chain a series of computational operations guided by expert knowledge but not in conjunction with a specific
objective function (e.g. ClustalW).

Example: Approximation algorithm

As an example think of the Traveling Saleman Problem with triangle inequality for n cities. This is an NP-hard
problem (no polynomial-time algorithm is known).

The following greedy, deterministic algorithm yields a 2− approximation for the TSP with triangle inequality in
time O(n2).

1. Compute a minimum spanning tree T for the complete graph implied by the n cities.

2. Duplicate all edges of T yielding a Eulerian graph T ′ and then find an Eulerian path in T ′.

3. Convert the Eulerian cycle into a Hamiltonian cycle by taking shortcuts.

Can you now argue why this is a 2−approximation?

Categorization according to main concept

Another way which you have often heard until now is to use the main algorithmic paradigm to categorize an
algorithm, such as:

• Simple recursive algorithms

• Backtracking algorithms

• Divide-and-conquer algorithms

• Dynamic programming algorithms

• Greedy algorithms

• Branch-and-bound algorithms

Concept: Types of algorithms and algorithm analyses, by Knut Reinert, 20. Oktober 2011, 12:16 1003

• Brute force algorithms

• and others....

Simple recursive algorithms

A simple recursive algorithm

• Solves the base cases directly

• Recurs with a simpler subproblem

• Does some extra work to convert the solution to the simpler subproblem into a solution to the given
problem

Examples are:

• To count the number of elements in a list:

– If the list is empty, return zero; otherwise,

– Step past the first element, and count the remaining elements in the list

– Add one to the result

• To test if a value occurs in a list:

– If the list is empty, return false; otherwise,

– If the first thing in the list is the given value, return true; otherwise

– Step past the first element, and test whether the value occurs in the remainder of the list

Backtracking algorithms

A backtracking algorithm is based on a depth-first recursive search. It

• Tests to see if a solution has been found, and if so, returns it; otherwise

• For each choice that can be made at this point,

– Make that choice

– Recur

– If the recursion returns a solution, return it

• If no choices remain, return failure

For example color a map with no more than four colors:

• color(Country n)

– If all countries have been colored (n > number of countries) return success; otherwise,

– For each color c of four colors,

∗ If country n is not adjacent to a country that has been colored c

· Color country n with color c

· recursivly color country n + 1

· If successful, return success

Return failure (if loop exits)

1004 Concept: Types of algorithms and algorithm analyses, by Knut Reinert, 20. Oktober 2011, 12:16

Divide-and-conquer algorithms

A divide-and-conquer algorithm consists of two parts.

• Divide the problem into smaller subproblems of the same type and solve these subproblems recursively

• Combine the solutions to the subproblems into a solution to the original problem

Traditionally, an algorithm is only called divide-and-conquer if it contains two or more recursive calls.

Two examples:

• Quicksort:

– Partition the array into two parts, and quicksort each of the parts

– No additional work is required to combine the two sorted parts

• Mergesort:

– Cut the array in half, and mergesort each half

– Combine the two sorted arrays into a single sorted array by merging them

Dynamic programming algorithms

A dynamic programming algorithm remembers past results and uses them to find new results. Dynamic pro-
gramming is generally used for optimization problems in which:

• Multiple solutions exist, need to find the best one

• Requires optimal substructure and overlapping subproblem

• Optimal substructure: Optimal solution contains optimal solutions to subproblems

• Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up fashion

This differs from Divide-and-Conquer, where subproblems generally need not overlap.

There are many examples in bioinformatics. For example:

• Compute an optimal pairwise alignment

– Optimal substructure: the alignment of two prefixes contains solutions for the optimal alignments of
smaller prefixes.

– Overlapping subproblems: The solution for the optimal alignment of two prefixes can be constructed
using the stored solutions of the alignment of three subproblems (in the linear gap model).

• Compute a Viterbi path in an HMM

– Optimal substructure: the Viterbi path for an input prefix ending in a state of an HMM contains shorter
Viterbi paths for smaller parts of the input and other HMM states.

– Overlapping subproblems: The solution for the Viterbi path for an input prefix ending in a state of an
HMM can be constructed using the stored solutions of Viterbi paths for a shorter input prefix and all
HMM states.

Greedy algorithms

Concept: Types of algorithms and algorithm analyses, by Knut Reinert, 20. Oktober 2011, 12:16 1005

A greedy algorithm sometimes works well for optimization problems. A greedy algorithm works in phases. At
each phase:

• You take the best you can get right now, without regard for future consequences

• You hope that by choosing a local optimum at each step, you will end up at a global optimum

This strategy actually often works quite well and for some class of problems it always yields an optimal solution.

Do you know a simple graph problem which is solved greedily to optimality?

Another example would be the following. Suppose you want to count out a certain amount of money, using the
fewest possible bills and coins. A greedy algorithm would do this would be to take the largest possible bill or coin
that does not overshoot. For example: To make $6.39, you can choose:

• a $5 bill

• a $1 bill, to make $6

• a 25c coin, to make $6.25

• a 10c coin, to make $6.35

• four 1c coins, to make $6.39

For US money, the greedy algorithm always gives the optimum solution (caution: for other money systems not
(imagine a currency with units of 1, 7, and 10 and try the algorithm for 15 units).

Branch-and-bound algorithms

Branch-and-bound algorithms are generally used for optimization problems. As the algorithm progresses, a tree
of subproblems is formed. The original problem is considered the root problem. A method is used to construct
an upper and lower bound for a given problem.

At each node, apply the bounding methods.

• If the bounds match, it is deemed a feasible solution to that particular subproblem.

• If bounds do not match, partition the problem represented by that node, and make the two subproblems
into children nodes.

Continue, using the best known feasible solution to trim sections of the tree, until all nodes have been solved or
trimmed.

An example of a branch-and-bound algorithms would be the folloing for the Travelling salesman problem (TSP).
A salesman has to visit each of n cities (at least) once each, and wants to minimize total distance travelled.

• Consider the root problem to be the problem of finding the shortest route through a set of cities visiting
each city once

• Split the node into two child problems:

– Shortest route visiting city A first

– Shortest route not visiting city A first

• Continue subdividing similarly as the tree grows

Brute force algorithms

1006 Concept: Amortized analysis, by Knut Reinert, 20. Oktober 2011, 12:16

A brute force algorithm simply tries all possibilities until a satisfactory solution is found. Such an algorithm can
be:

• Optimizing: Find the best solution. This may require finding all solutions, or if a value for the best solution
is known, it may stop when any best solution is found (Example: Finding the best path for a travelling
salesman)

• Satisficing: Stop as soon as a solution is found that is good enough (Example: Finding a travelling sales-
man path that is within 10% of optimal)

Conclusion

I presented to you many categories with which you can classify or label algorihms. Such a classification gives
you a clear understanding about how an algorithm works and an indication how to analyze it.

What algorithms do you know? and what labels would they get?

In the following we will talk about how to analyze the different kind of algorithms with appropriate techniques.

Concept: Run time analysis
The exposition is based on the following sources, which are all required reading:

1. Corman, Leiserson, Rivest: Introduction to algorithms, Chapter 18

In this section we recall the basic notations for run time analyses and then describe the different concepts
of worst-case run time, average case run time, expected run time, amortized run time, and the analysis of
competitiveness.

Lets start by recalling the definitions of the Landau symbols (O,Ω,Ω∞,Θ,o,ω).

O(f) := {g : N→ R+ : ∃c ∈ R> 0,n0 ∈ N : ∀n ∈ N,n ≥ n0 : g(n)≤ c · f (n)} (1.1)

Ω(f) := {g : N→ R+ : ∃c ∈ R> 0,n0 ∈ N : ∀n ∈ N,n ≥ n0 : g(n)≥ c · f (n)} (1.2)

Ω∞(f) := {g : N→ R+ : ∃c ∈ R> 0 : ∀m ∈ N : ∃n ∈ N,n > m : g(n)≥ c · f (n)} (1.3)

Θ(f) := {g : N→ R+ : g ∈ O(f) and g ∈ Ω(f)} (1.4)

o(f) := {g : N→ R+ : lim
n→∞

g(n)
f (n)

= 0} (1.5)

ω(f) := {g : N→ R+ : lim
n→∞

f (n)
g(n)

= 0} (1.6)

In the following we list some commonly used adjectives describing classes of functions. Mind that we use the
more common = sign instead of the (correct) ∈ sign.

We say af function f :

• is constant, if f (n) = Θ(1)

• grows logarithmically, if f (n) = O(logn)

• grows polylogarithmically, if f (n) = O(logk (n)) for a k ∈ N.

• grows linearly, if f (n) = O(n)

• grows quadratically, if f (n) = O(n2)

We say af function f :

Concept: Amortized analysis, by Knut Reinert, 20. Oktober 2011, 12:16 1007

• grows polynomially, if f (n) = O(nk), for a k ∈ N.

• grows superpolynomially, if f (n) = ω(nk),∀k ∈ N.

• grows subexponentially, if f (n) = o(2cn),∀0 < c ∈ R.

• grows exponentially, if f (n) = O(2cn) for a 0 < c ∈ R.

After that reminder lets introduce the different run time definitions and explain them using an example.

• worst case analysis: We assume for both, the input and the execution of the algorithm the worst case. The
latter is of course only applicable for non-deterministic algorithms.

• best case analysis: We assume for both, the input and the execution of the algorithm the best case. The
latter is of course only applicable for non-deterministic algorithms.

• average case analysis: We average over all possible input the run time of our (deterministic) algorithm.

• expected run time analysis: Our algorithm runs depending on the value of some random variables for
which we know their distributions. Hence we try to estimate the expected run time of the algorithm.

• amortized analysis: Sometimes, an algorithm (usually an operation on a data structure) needs a long time
to run, but changes the data structure such that subsequent operations are not costly. A worst case run
time analysis would be inappropriate. An amortized analysis averages over a series of operations (not
over the input).

• competitiveness analysis: For online algorithms we need a new concept of run time analysis. The main
concept is to compare the run time an algorithm needs in the worst case (i.e. forall possible inputs) not
knowing the input, with the runtime of an optimal offline algorithm (which knows the input).

The well-known (deterministic) quicksort algorithm for sorting an array chooses a fixed element as its pivot
element, lets say w.l.o.g. the first one. It arranges all smaller elements on the left of the pivot, all larger ones on
the right and recurses on the two halfs.

• worst case analysis: In the worst case, the left (or the right) half are always empty. Hence the worst case
run time is the solution to the recurrence
f (n) = (n−1) + f (n−1), f (0) = 0. Obviously f = O(n2).

• best case analysis: In the best case, the left and the right half differ in size by at most one. Hence the best
case run time is the solution to the recurrence
f (n) = (n−1) + 2∗ f (n/2), f (0) = 0. Obviously f = O(n logn).

• average case analysis: We average over all possible inputs the run time of the deterministic quicksort.
The result is that quicksort needs O(n logn) comparisons on average.

The dependence on the input and the bad worst case run time of quicksort are worrysome. Quicksort (like many
other algorithms) can be made considerably more robust by randomizing the algorithm. In randomized quicksort
we choose the pivot element randomly using the value of a random variable uniformly distributed over [1,n].

• expected run time analysis: randomized quicksort can be shown to run in expected time O(n logn) with
high probability. We will discuss such an analysis now in detail (and a similar one using skiplists later in
the lecture).

Example: randomized quicksort

1008 Concept: Amortized analysis, by Knut Reinert, 20. Oktober 2011, 12:16

Quicksort is a perfect example to demonstrate the power of randomization. First we create a randomized version
of quicksort called RandQS by simply not choosing the first element as pivot element but a random element of
the sublist we have to sort in each recursive call. Hence RandQS is a Las-Vegas style, randomized, divide-and-
conquer algorithm.

By doing so, we created an algorithm whose outcome depends on random choices, or put it differently, on the
values of some random variables. Hence we have to analyze its expected run time or more particularly the
expected number of comparisons in an execution of RandQS.

Lets do that.

Let S(i) denote the element of rank i in the set S which we want to sort.

Now we define the random variable Xij to assume the value 1 if S(i) and S(j) are compared in an execution of
RandQS. The variable is 0 otherwise. So obviously the run time of RandQS is proportional to X = ∑

n
i=1 ∑j>i Xij .

The sum of random variables is itself a random variable.

In the analysis of the expected run time we are hence interested in

E(X) =
n

∑
i=1

∑
j>i

E(Xij).

Let pij be the probability that S(i) and S(j) are compared in an execution of RandQS. Then:

E(Xij) = pij ·1 + (1−pij) ·0 = pij

So we have to concentrate on the question how large pij is.

To analyze this, we view the execution of RandQS as a binary tree T , in which each node is labeled with a
distinct element y ∈ S. The elements in the left subtree are then all ≤ to y , the elements in the right subtree are
all > than y .

Observe that the root of the tree is compared to all elements in the tree, but there is no comparison between
an element of the left subtree with an element of the right subtree. Hence two elements S(i) and S(j) are only
compared if one is an ancestor of the other.

An in-order traversal of the tree output the elements of S in sorted order. For the analysis we focus on the level-
order traversal. This traversal goes level-by-level and left-to-right and yields a permutation π of the elements of
S.

Now we make two key observations:

1. ∃ a comparison between S(i) and S(j) if and only if S(i) or S(j) occurs earlier in π than any element of rank
between S(i) and S(j). (Why?)

2. Any of the elements S(i),Si+1, ... ,S(j) is equally likely to be the first one in the execution of RandQS. Hence
the probability of either S(i) or S(j) being the first one is exactly 2

j−i+1 .

From these two observations follows that pij = 2
j−i+1 .

Using this value in our computation of E(X) yields:

n

∑
i=1

∑
j>i

pij =
n

∑
i=1

∑
j>i

2
j− i + 1

(1.7)

≤
n

∑
i=1

n−i+1

∑
k=1

2
k

(1.8)

≤ 2 ·
n

∑
i=1

n

∑
k=1

1
k

(1.9)

= 2 ·n ·Hn. (1.10)

where Hn is the n− th harmonic number. given that Hn ≈ lnn +Θ(1) it follows that the expected run time of
RandQS is O(n logn).

Concept: Amortized analysis, by Knut Reinert, 20. Oktober 2011, 12:16 1009

Comparing this to the worst case time of the deterministic Quicksort which is O(n2) shows how powerful a coin
throw can be.

As a second concept in run time analysis we have a look at amortized analysis. Often (no matter whether for
randomized or deterministic algorithms) the worst case analysis is not appropriate, because the worst case
cannot happen often. No matter what the input is.

If this is the case, then the run time averaged over a series of n operations cannot be equal to n times the worst
case run time. Indeed, the averaged run time will often be much better.

It is important to note that this is different form the average run time analysis. There, one averages over the
distribution of inputs. So it could still be that an algorithm, presented with a ”bad” input runs very slowly.

Here, we average over all possible excutions of the algorithms for any given input. To make this distinction clear,
this type of analysis is called amortized analysis.

Concept: Amortized analysis

Imagine for example a stack. We have the following operations on the stack

• Pop(S) pops the top element of the stack and returns it.

• Push(S,x) pushed element x on the stack.

• MultiPop(S,k) returns at most the top k elements from the stack (it calls Pop k times).

Obviously the operations Pop and Push have worst case time O(1). However the operation MultiPop can be
linear in the stack size. So if we assume that at most n objects are on the stack, a multipop operation can have
worst case cost of O(n). Hence in the worst case a series of n stack operations is bounded by O(n2).

We will now use this example to illustrate three different techniques to find a more realistic amortized bound for
n operations.

The three methods to conduct the analysis which are:

• The aggregate method

• The accounting method

• The potential method

The aggregate method

Here we show that for all n, a sequence of n operations takes worst-case time T (n) in total. Hence, for this worst
case, the average cost, or amortized cost is T (n)/n. Note that this method charges the same amortized cost to
each operation in the sequence of operations, even if this sequence contains different types of operations.

The other two methods can assign individual amortized costs for each type of operation.

We argue as follows. In any sequence of n operations on an initially empty stack, each object can be popped at
most once for each time it is pushed. Therefore, the number of times Pop can be called on a nonempty stack
(including calls within MultiPop), is at most the number of Push operations, which is at most n.

Hence, for any value of n, any sequence of n Push, Pop, and MultiPop operations takes a total of O(n) time.
Hence the amortized cost of any operation is O(n)/n = O(1).

The accounting method

In the accounting method we assign differing charges to different operations, with some operations charge more
or less than they actually cost. The amount we charge an operation is called its amortized cost.

1010 Concept: Amortized analysis, by Knut Reinert, 20. Oktober 2011, 12:16

When an operation’s amortized cost exceeds its actual cost, the difference is assigned to specific objects in the
data structure as credit. Credit can then be used to pay later for operations whose amortized cost is less than
their actual cost.

One must choose the amortized costs carefully. If we want the analysis with amortized costs to show that in the
worst case the average cost per operation is small, then the total amortized cost of a sequence of operations
must be an upper bound on the total actual cost of the sequence. Moreover, this relationship must hold for all
sequences of operations, thus the total credit must be nonnegative at all times.

Let us return to our stack example.

The actual costs are:

• Pop(S) 1,

• Push(S,x) 1,

• MultiPop(S,k) min(k ,s), where s is the size of the stack.

Let us assign the following amortized costs.

• Pop(S) 0,

• Push(S,x) 2,

• MultiPop(S,k) 0.

Note that the amortized costs of all operations is O(1) and hence the amortized cost of n operations is O(n).
Note also that the actual cost of MultiPop is variable whereas the amortized cost is constant.

Using the same argument as in the aggregate method it is easy to see that our account is always charged
starting with an empty stack. Each Push operation pays 2 credits. One for its own cost and one for the cost of
popping the element off the stack, either through a normal Pop or through a MultiPop operation.

Please note that this method can assign individual, different amortized costs to each operation.

The potential method

Instead of representing prepaid work as credit stored with specific objects in the data structure, the potential
method represents the prepaid work as ”potential energy” or simply ”potential” that can be released to pay for
future operations.

The potential is associated with the data structure as a whole rather than with specific objects within the data
structure. It works as follows. We start with an initial data structure D0, on which n operations are performed. For
each i = 1,2, ... ,n we let ci be the actual cost of the i-th operation and Di be the data structure that results after
applying the i-th operation.

A potential function Φ maps each data structure Di to a real number Φ(Di), which is the potential associated
with the data structure Di . The amortized cost ĉi of the i-th operation with respect to the potential function Φ is
defined by

ĉi = ci +Φ(Di)−Φ(Di−1).

that is, the amortized cost is the actual cost plus the increase in potential due to its operation. Hence the total
amortized cost of the n operations is:

n

∑
i=1

ĉi =
n

∑
i=1

(ci +Φ(Di)−Φ(Di−1)) =
n

∑
i=1

ci +Φ(Dn)−Φ(D0).

If we can define a potential function Φ so that Φ(Dn) ≥ Φ(D0), then the total amortized cost ∑
n
i=1 ĉi is an upper

bound on the total actual cost. In practice we do not know how many operations might be performed and therefore

Concept: Amortized analysis, by Knut Reinert, 20. Oktober 2011, 12:16 1011

guarantee the Φ(Di) ≥ Φ(D0), for all i . It is often convenient to define Φ(D0) = 0 and then show that all other
potentials are non negative.

Lets illustrate the method using our stack example.

We define the potential function on the stack as the number of elements it contains. Hence the empty stack D0

has Φ(D0) = 0. Since the number of objects on the stack is never negative we have Φ(Di) ≥ 0 for all stacks Di

resulting after the i-th operation.

Let us now compute the amortized costs of the various stack operations. If the i-th operation on a stack containing
s objects is a Push operation, then the potential difference is

Φ(Di)−Φ(Di−1) = (s + 1)− s

= 1

(1.11)

Hence the amortized cost is:
ĉi = ci +Φ(Di)−Φ(Di−1) = 1 + 1 = 2.

If the i-th operation on a stack containing s objects is a MultiPop(S,k) then k ′ = min(k ,s) objects are popped
off the stack. The actual cost of the operation is k ′ and the potential difference is:

Φ(Di)−Φ(Di−1) = (s− k ′)− s

= −k ′

(1.12)

Hence the amortized cost is:
ĉi = ci +Φ(Di)−Φ(Di−1) = k ′− k ′ = 0.

A similar result is obtained for Pop. This shows that the amortized cost of each operation is O(1) and hence the
total amortized cost of a sequence of n operations is O(n).

