
Discrete Math for Bioinformatics WS 11/12: , by A. Bockmayr/K. Reinert, 31. Oktober 2011, 09:53 2001

Hashing
The exposition is based on the following sources, which are all recommended reading:

1. Cormen, Leiserson, Rivest: Introduction to Algorithms, 1991, McGraw Hill (Chapter 12)

2. Sedgewick: Algorithmen in C++, 2002, Pearsons, (Chapter 14)

3. Motwani: Randomized Algorithms, Chapter 8.4

Problem definition

Many applications require the support of operations INSERT, DELETE and SEARCH on a dynamic set which can
grow and shrink over time.

Each element that can be inserted in the set has a key which is drawn from the universe U. The subset S that
is stored in our set is comparatively very small, that is |S|<< |U|.
What we would like is a data structure that supports the above operations if possible in time O(1) while using
only O(|S|) space.

Assume now that the subset S of U has size n << |U|. Obviously it takes to much space to allocate a table of
size |U|.
Hence we simply allocate a table T of size m = O(n) and map each element of S to a position in T . This is done
by means of a hash function h : U 7→ {0,1, ... ,m−1}. A hash function should be computable in time O(1).

The obvious problem that occurs in hashing schemes is that of collisions, that is the case that for two keys x and
y with x 6= y holds h(x) = h(y).

There are several ways to deal with collisions. One is to avoid them altogether (which is possible using perfect
hashing). If we allow for collisions there are two common methods to deal with them:

1. Chaining: We keep a linked list of the keys that hash to the same position in the hash table.

2. Open adressing: We store all keys in the table itself, and whenever a collision occurs, we use a secondary
methods to locate another, free position in the table.

We will first talk about chaining and open adressing.

Hashing with chaining

The technique is straightforward and leads to the following running times for the basic operations:

1. SEARCH(T ,k): This is proportional to the length of the list to which k hashes to. In the worst case O(n).

2. INSERT(T ,k): Here we have to append to a list in time O(1).

3. DELETE(T ,k): This is proportional to the length of the list to which k hashes to. Again in the worst case
O(n).

Of course the worst case scenario is not common. Usually the analysis is conducted under the assumption
of simple uniform hashing, that means any element is equally likely to hash into any of the hash table slots,
independently of the other elements. In that case we conduct the running time analysis in terms of the load
factor α = n/m.

It is not hard to show the following theorem:

2002 Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53

Theorem 1. In a hash table in which collisions are resolved by chaining, a (successful or unsuccessful) search
takes time Θ(1 + α), on average, under the assumption of simple uniform hashing.

Proof: To determine the expected number of elements examined during a successful search we take the average
over all n elements in the table. More precisely, we take the average over 1 plus the expected length of the list
when the i-th element is added. Under the assumption of simple uniform hashing this length is i−1

m , hence:

1
n

n

∑
i=1

(1 +
i−1

m
) = 1 +

1
nm

n

∑
i=1

(i−1) (2.1)

= 1 +
1

nm
(
(n−1)n

2
) (2.2)

= 1 +
α

2
− 1

m
(2.3)

Hence, if n = O(m), searching takes constant time on average.

As a side remark. Even under the assumption of simple uniform hashing, the length of the longest chain is not
constant (come back to that during the skip list lecture).

In practice we choose – depending on the hash function – m a prime or a power of two (avoids modulo compu-
tations but has other disadvantages).

The problem with the above analysis is of course, that the assumption of simple uniform hashing does not always
hold in reality. What can we do in that case? We then have to have a closer look at the hash function used.

Hash functions

A good hash function is of course crucial to the performance of any hashing scheme. It should come close
to satisfying the asumption of simple uniform hashing, or more formally, ∑k :h(k)=j P(k) = 1/m, j = 0,1, ... ,m− 1,
where P(k) is the probability that the key k is drawn.

Unfortunately P is generally unknown. We will now introduce some common classes of hash functions and for
simplicity assume, that the keys are natural numbers:

In the division method we use h(k) = k mod m. Here a few rules of thumb for choosing m.

1. Avoid powers of 2 as a value of m. Otherwise only the lowest order p bits will be used in the hash if m = 2p.

2. Avoid powers of 10 when decimal numbers are used as keys.

3. Good values of p are primes not too close to a power of 2.

In the multiplication method we use h(k) = bm(kA mod 1)c.

1. The selection of m is not critical for this method. One can pick a power of 2.

2. The method works well with any A, but some values are better than others. According to Knuth a ”good”
value of A is 0.61803...

Here an example of how the method works. Assume we have k = 123456, m = 10000 and A = 0.61803, then

h(k) = b10000 · (123456 ·0,61803 mod 1)c
= b10000 · (76300.0041151 mod 1)c
= b41.151c
= 41

Universal hashing

Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53 2003

No matter how we choose our hash function, it is always possible to devise a set of keys that will hash to the
same slot, making the hash scheme perform poorly.

To circumvent this, we randomize the choice of a hash function from a carefully designed set of functions. Let U
be the set of universe keys and H be a finite collection of hash functions mapping U into {0,1, ... ,m−1}. Then
H is called universal if for x ,y ∈ U, (x 6= y)

| {h ∈H : h(x) = h(y)} |= |H |
m

.

In other words, the probability of a collision for two different keys x and y given a hash function randomly choosen
from H is 1/m.

How can we create a set of universal hash functions? One possibility is as follows:

1. Choose the table size m to be prime.

2. Decompose the key x into r +1 ”bytes” so that x = 〈x0,x1, ... ,xr 〉, where the maximal value of any xi is less
than m.

3. Let a = 〈a0,a1, ... ,ar 〉 denote a sequence of r +1 elements chosen randomly such that ai ∈{0,1, ... ,m−1}.
There are mr+1 possible such sequences.

4. Define a hash function ha with ha(x) = ∑
r
i=0 aixi mod m.

5. H = ∪a{ha} with mr+1 members, one for each possible sequence a.

Theorem 2. The class H defined above defines a universal class of hash functions.

Proof: Consider any pair of distinct keys x and y and assume h(x) = h(y) as well w.l.o.g. x0 6= y0. Then for any
fixed 〈a1,a2, ... ,ar 〉 it holds:

r

∑
i=0

aixi (mod m) =
r

∑
i=0

aiyi (mod m).

Hence:
r

∑
i=0

ai (xi − yi)(mod m) = 0

Hence:

a0(x0− y0)≡−
r

∑
i=1

ai (xi − yi)(mod m).

Note that m is prime and (x0− y0) is non-zero, hence it has a (unique) multiplicative inverse modulo m. Multi-
plying both sides of the equation with this inverse yields:

a0 ≡−
r

∑
i=1

(ai (xi − yi)) · (x0− y0)−1(mod m).

and there is a unique a0 mod m which allows h(x) = h(y).

Each pair of keys x and y collides for exactly mr values of a, once for each possible value of 〈a1,a2, ... ,ar 〉.
Hence, out of mr+1 combinations of a0,a1,a2, ... ,ar , there are exactly mr collisions of x and y , and hence the
probability that x and y collide is mr/mr+1 = 1/m. Hence H is universal.

What we will need to find a class of universal hash functions is some knowledge about how to solve the equation

ax ≡ b(mod n),n > 0.

Denote 〈a〉 the subgroup of Zn generated by a. Then of course the above equation only has a solution if b ∈ 〈a〉.
The below theorem tells us that | 〈a〉 | must be a divisor of n.

Theorem 3 (Langrange’s theorem). if (S,⊕) is a finite group and (S′,⊕) is a subgroup of (S,⊕), then | S′ | is a
divisor of | S |.

2004 Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53

The following theorem gives us a more precise characterization of 〈a〉.

Theorem 4. For any positive integers a and n, if d = gcd(a,n), then

〈a〉 = 〈d〉 = {0,d ,2d , ... , ((n/d)−1)d},

and thus
| 〈a〉 |= n/d .

Proof: (exercise).

Corollary 5. The equation ax ≡ b(mod n) is solvable for the unknown x if and only if gcd(a,n) divides b.

Particular useful corollaries are:

Corollary 6. The equation ax ≡ b(mod n) has either d distinct solutions modulo n, where d = gcd(a,n), or it
has no solution.

Corollary 7. For any n > 1 , if gcd(a,n)≡ 1, then the equation ax ≡ b(mod n) has a unique solution modulo n.

So what we should keep in mind is that if we choose the n to be prime, we can be sure to have a multiplicative
inverse (i.e. b = 1) modulo n for each x .

Open addressing

The idea of open addressing is to trade table size for pointers. All elements are directly stored in the hash table.

To perform an insertion we now probe the hash table for an empty slot in some systematic way. Instead of using
a fixed order, the sequence of positions probed depends on the key to be inserted.

The hash function is redefined as

h : U×{0,1, ... ,m−1} 7→ {0,1, ... ,m−1}

For every key k the probe sequence 〈h(k ,0),h(k ,1), ... ,h(k ,m−1)〉 is considered. If no free position is found in
the sequence the hash table overflows.

The main problem with open addressing is the deletion of elements. We cannot simply set an element to NIL,
since this could break a probe sequence for other elements in the table.

It is possible to use a special purpose marker instead of NIL when an element is removed. However, using this
approach the search time is no longer dependent on the load factor α. Because of those reasons, open-address
hashing is usually not done when delete operations are required.

Probe sequences

In the analysis of open addressing we make the assumption of simple uniform hashing.

To compute the probe sequences there are three different techniques commonly used.

1. linear probing

2. quadratic probing

3. double hashing

Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53 2005

These techniques guarantee that 〈h(k ,0),h(k ,1), ... ,h(k ,m−1)〉 is a permutation of 〈0,1, ... ,m−1〉 for each k ,
but none fullfills the assumption of uniform hashing, since none can generate more than m2 sequences.

Given h′ : U 7→ {0,1 ... ,m−1}, linear probing uses the hash function: h(k , i) = (h′(k)+ i) mod m for i = 0,1, ... ,m−
1.

Given key k , the first slot probed is T [h′(k)] then T [h′(k) + 1] and so on. Hence, the first probe determines the
remaining probe sequence.

This methods is easy to implement but suffers from primary clustering, that is, two hash keys that hash to
different locations compete with each other for successive rehashes. Hence, long runs of occupied slots build
up, increasing search time.

For example, if we have n = m/2 keys in the table, where every even-indexed slot is occupied and every odd-
indexed slot is free, then the average search time takes 1.5 probes.

If the first n = m/2 locations are the ones occupied, however, the average number of probes increases to n/4 =
m/8.

Clusters are likely to arise, since if an empty slot is preceeded by i full slots, then the probability that the empty
slot is the next one filled is (i + 1)/m compared with the probability of 1/m if the preceeding slot was empty.

Thus, runs of occupied slots tend to get longer, and linear probing is not a very good approximation to uniform
hashing.

Quadratic hashing uses a hash function of the form h(k , i) = (h′(k)+c1i +c2i2) mod m for i = 0,1, ... ,m−1, where
h′ : U 7→ {0,1 ... ,m−1} is an auxilliary hash function and c1,c2 6= 0 auxiliary constants. Note that c1 and c2 must
be carefully choosen.

Quadratic probing is better than linear probing, because it spreads subsequent probes out from the initial probe
position. However, when two keys have the same initial probe position, their probe sequences are the same, a
phenomenon known as secondary clustering.

Double hashing is one of the best open addressing methods, because the permutations produced have ma-
ny characteristics of randomly chosen permutations. It uses a hash function of the form h(k , i) = (h1(k) +
ih2(k)) mod m for i = 0,1, ... ,m−1, where h1, and h2 are auxilliary hash functions.

The initial position probed is T [h1(k) mod m] , with successive positions offset by the amount (ih2(k)) mod m.
Now keys with the same initial probe position can have different probe sequences.

Note that h2(k) must be relatively prime to m for the entire hash table to be accessible for insertion and search.
Or put it differently, if d = GCD(h2(k),m) > 1 for some key k , then the search for key k would only access 1/d-th
of the table.

A convenient way to ensure that h2(k) is relatively prime to m is to select m as a power of 2 and design h2 to
produce an odd positive integer. Or, select a prime m and let h2 produce a positive integer less than m.

Double hashing is an improvement over linear and quadratic probing in that Θ(m2) sequences are used rather
then Θ(m) since every (h1(k),h2(k)) pair yields a distinct probe sequence, and the initial probe position, h1(k),
and offset h2(k) vary independently.

Analysis of open addressing

Theorem 8. Given an open address hash table with load factor α = n/m < 1, the expected number of probes in
an unsuccessful search is at most 1

1−α
, assuming simple uniform hashing.

Proof: Define pi = Pr (exactly i probes access occupied slots)for i = 0,1,2, ... (Note that for i > n, pi = 0). The
expected number of probes is then 1+∑

∞
i=0 i ·pi . Now define qi = Pr (at least i probes access occupied slots), then

∑
∞
i=0 i ·pi = ∑

∞
i=1 qi (why? (exercise)).

The probability that the first probe accesses an occupied slot is n
m , so q1 = n

m . A second probe, if needed, will
access one of the remaining m− 1 locations which contain n− 1 possible keys, so q2 = n

m ·
n−1
m−1 . Hence for

2006 Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53

i = 1,2, ... ,n

qi =
n
m
· n−1

m−1
· · · n− i + 1

m− i + 1
≤ (

n
m

)i = α
i .

Hence the following holds:

1 +
∞

∑
i=0

i ·pi = 1 +
∞

∑
i=1

qi ≤ 1 + α + α
2 + α

3 + · · · = 1
1−α

.

Hence, if the table is half full, at most 2 probes will be required on average, but if it is 80% full, then on average
up to 5 probes are needed.

Analysis of open addressing

Theorem 9. Given an open address hash table with load factor α = n/m < 1, the expected number of probes in
a successful search is at most 1

α
ln 1

1−α
, assuming uniform hashing and assuming that each key in the table is

equally likely to be searched for.

Proof: A successful search has the same probe sequence as when the element was inserted. Averaging this time
over all elements yields:

1
n

n−1

∑
i=0

1
1− i/m

=
1
n

n−1

∑
i=0

m
m− i

(2.4)

=
m
n

m

∑
i=m−n+1

1
i

(2.5)

≤ 1
α

∫ m

m−n

1
x

dx (2.6)

=
1
α

ln
m

m−n
(2.7)

=
1
α

ln
1

1−α
(2.8)

(2.9)

Hence, if the table is half full, the expected number of probes in a successful search is 1
0.5 ln 1

0.5 = 1.387.

Perfect Hashing

The ultimate combination of the the ideas presented above leads to perfect hashing. A hash funciton is called
perfect if it causes no collisions. (Please note, that the notation in Motwani p. 221ff is different).

In (static) perfect hashing we can achieve a worst case search time of O(1) while using only O(n) space by using
a perfect hash family of functions. That means for a given set S, a family of hash functions is perfect, if it contains
at least one perfect function for S.

In (static) perfect hashing we can achieve a worst case search time of O(1) while using only O(n) space. This is
achieved by a clever two-step hashing scheme similar to the double hashing scheme in open adressing.

The idea is as follows. One uses a first hash function to hash the n keys to a table of size O(n) such that
the overall number of collisions is linear, and then hashes all elements nj that are in the same table slot to a
secondary hash table of size O(n2

j). Then the overall space consumption is linear.

By allocating enough space this scheme guarantees, that we can find in an expected constant number of steps
a hash function without collision while still using linear space.

This sounds too good to be true, but here is the argument.

The hash function used in perfect hashing is of the form hk (x) = (kx mod p) mod r , where p is a prime. It was
introduced and analyzed in the paper of Fredman, Komlós, and Szemerédi in 1984.

Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53 2007

Definition 10. Consider any V ⊆ U with |V | = v , and let R = {0, ... , r −1} with r ≥ v . For 1≤ k ≤ p−1, define
the function hk (x) = (kx mod p) mod r . Further define for each i ∈ R the bins corresponding to the keys colliding
at i as Bi (k , r ,V) = {x ∈ V |hk (x) = i} and their cardinality as bi (k , r ,V).

r is a parameter which we will choose in our scheme in different ways.

Lemma 11. For all V ⊆ U of size v, and all r ≥ v,

p−1

∑
k=1

r−1

∑
i=0

(
bi (k , r ,V)

2

)
<

(p−1)v2

r

Proof: The left hand side of the inequality counts exactly the number of collisions for all possible hash functions
hk , or put it differently, the number of tuples (k ,{x ,y}) with:

1. x ,y ∈ V with x 6= y , and

2. ((kx mod p) mod r) = ((ky mod p) mod r)

Fix now x 6= y . The total contribution for this pair is the number of ks for which k (x − y) mod p ≡ 0 mod r .
Since p is prime, there is only one solution for each multiple of r . k can assume at most 2(p−1)/r values that
are multiples of r . There are exactly

(v
2

)
different pairs {x ,y} and thus it follows:

p−1

∑
k=1

r−1

∑
i=0

(
bi (k , r ,V)

2

)
≤
(

v
2

)
2(p−1)

r
<

(p−1)v2

r
.

The pidgeonhole principle immediately yields:

Lemma 12. For all V ⊆ U of size v, and all r ≥ v there exists a k ∈ {1, ... ,p−1} such that

r−1

∑
i=0

(
bi (k , r ,V)

2

)
<

v2

r
.

Also, for all V ⊆ U of size v, and all r ≥ v

r−1

∑
i=0

(
bi (k , r ,V)

2

)
< 2

v2

r

for at least one-half of the choices of k.

Applying the above lemma to an input of size v and using a hash table of size r = v2 means, that there is at least
one perfect hash function in the family. Allocating space r = 2v2 ensures that at least half of the hash functions
are perfect. Also, allocating linear space (v or 2v) ensures that the sum of all collisions is linear.

Lets summarize the perfect hashing scheme

Theorem 13. For all S ⊆U of size n, and all m≥ n there exists a hash table representation of S that uses space
O(n) and permits the Search operation in time O(1) without any collisions.

We choose a primary hash function hk that maps S into a primary table of size n. This requires n + 1 memory
cells. The keys in Bi (k , r ,V) are then hashed into a secondary table of size bi (k , r ,V)2 using a perfect hash
function.

Applying the above lemma, there exists a hash function such that the sum of collisions is linear or put it differently:

n−1

∑
i=0

(
bi (k ,n,S)

2

)
< n.

2008 Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53

doing some algebra this yields:
n−1

∑
i=0

bi (k ,n,S)2 < 3n.

So for the secondary hash tables we need 3n memory cells. In addition we need 2n for the ki and size of the
secondary hash tables, yielding all together 6n + 1 memory cells. The processing of a search operation requires
the inspection of 5n memory cells (the value of k and the primary hash table cell, the value of the corresponding
ki and ni and the value storing the key).

We give now here an example of the two stage hashing scheme. Assume that p = 31,n = 6 and S =
{2,4,5,15,18,30}. We try out a number of hashfunctions and find k = 2 sufficient, that means, the overall space
consumption is linear.

We allocate for each table two slots more and store the value k and nj in the first two positions. This gives the
following picture:

In the example we show the primary table and the secondary tables which are allocated in a consecutive piece
of memory.

k
0 1 2 3 4 5 6
2 22 7 10 16

7 8 9| 10 11 12 13 14 15| 16 17 18 19 20 21| 22 23 24
1 1 4| 2 1 5 2 | 2 3 30 18| 1 1 15
n2 k2 | n4 k4 | n5 k5 | n6 k6

The query for 30 is processed as follows:

1. k = T [0] = 2, j = (30 ·2 mod 31) mod 6 = 5. Hence we have to check the 5 + 1th position.

2. T [6] = 16, and from cells T [16] and T [17] we learn that block 5 has two elements and that k3 = 3

3. (30 · 3 mod 31) mod 22 = 0. Hence we check the 0 + 2 = 2th cell of block 5 and find that 30 is indeed
present.

How can we now achieve a good run time?

We have seen in the above lemma that spending some extra space changes the chances of finding the the
correct functions for the two level perfect hashing scheme quite dramatically. By doubling the allowed space we
can now find:

1. a first level function with the property that the sum of collisions is linear with probability p > 0.5.

2. each perfect second level hash function with probability p > 0.5.

Hence we randomly choose a first level hash function and test whether the sum of the collisions is linear. In
expectation we have to do this at most twice, hashing the keys into the bins thus needs expected time O(n).

Now we randomly choose a hash function for each bin. To find a perfect function we again need in expectation
two trials. Hashing the keys in a bin takes linear time in the number of elements and hence in expectation O(n)
time altogether.

Hence it follows, that (static) perfect hashing for a set S of size n takes expected time O(n) using O(n) space.

Mehlhorn et al. showed that you can also use a simple doubling technique in conjunction with static perfect
hashing, such that you can construct a dynamic hash table in expected time and space O(n) that supports
insertion, deletion and lookup time in expected, amortized time O(1).

Hashing Techniques, by Knut Reinert, 31. Oktober 2011, 09:53 2009

The idea is to use the static scheme until a collision occurs, then new hash functions are randomly choosen until
no collisions occur. In addition the tabel sizes are kept in a linear range (if elements are deleted we might have
to make the table smaller, if too many elements are inserted we have to make it bigger). In your exercises you
showed, that the table doubling can be done in amortized time O(1).

