Discrete Mathematics for Bioinformatics (P1)

WS 2010/11

Exercises 3

1. Skip lists (Niveau I)

Compute the expected value for the height (h), search time and space consumption if the probability p for each coin flip to produce a 1 is $1 / 3$.
2. "'sparse", skip list (Niveau I)

Each node in the skip list has up to two incoming directed edges pointing to other nodes in the skip list.
(a) Which edges are really necessary for a search and which can be removed?
(b) Can you give a rough estimate for the expected number of edges that can be removed?
3. Skip lists (Niveau II) Proof that the height of a skip list has expected value $O(\operatorname{logn})$ with high probability.

Hint: You do not need Chernoff bounds or Markov's inequality to show this.

4. Tail estimates (Niveau II)

Show that randomized Quicksort has expected run time $O(n \log n)$ with high probability.
Hint: Use the idea of successful/ unsuccessful splits. Let a split be successful if it splits the total set into two fractions such that both contain less than 75% of the complete set. What are the probabilities of these splits and how many are required to sort?

