
5 BLAST and Aho-Corasick

This exposition was prepared by Clemens Gröpl, based on versions by Daniel Huson and Knut Reinert. It is
based on the following sources, which are all recommended reading:

• Dan Gusfield: Algorithms on Strings, Trees, and Sequences. Computer Science and Computational
Biology. Cambridge University Press, Cambridge, 1997, pages 379ff. ISBN 0-521-58519-8

• Flexible Pattern Matching in Strings, Navarro, Raffinot, 2002, chapter 3.

5.1 BLAST, FASTA, ...

Pairwise alignment is used to detect homologies between different protein or DNA sequences, either as global
or local alignments.

This can be solved using dynamic programming in time proportional to the product of the lengths of the
two sequences being compared.

However, this is too slow for searching current databases and in practice algorithms are used that run
much faster, at the expense of possibly missing some significant hits due to the heuristics employed.

Such algorithms are usually on seed and extend approaches in which first small exact matches are found,
which are then extended to obtain long inexact ones.

5.2 Some BLAST terminology

BLAST, the Basic Local Alignment Search Tool, is perhaps the most widely used bioinformatics tool ever
written. It is an alignment heuristic that determines “local alignments” between a query q and a database d.

A segment is simply a substring s of q or d.

A segment-pair (s, t) consists of two segments, one in q and one d, of the same length.

V A L L A R

P A M M A R

We think of s and t as being aligned without gaps and score this alignment using a substitution score matrix,
e.g. BLOSUM or PAM.

The alignment score for (s, t) is denoted by σ(s, t).

A locally maximal segment pair (LMSP) is any segment pair (s, t) whose score cannot be improved by
shortening or extending the segment pair.

Given a cutoff score C, a segment pair (s, t) is called a high-scoring segment pair (HSP), if it is locally maximal
and σ(s, t) ≥ C.

BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08 5001

Given a cutoff score, the goal of BLAST is to compute all high-scoring segment pairs.

5.3 BLAST algorithm for protein sequences

A word is simply a short substring.

BLAST computes high-scoring segments pairs using short words as seeds. Exact matches of words are
searched using a special algorithm. Then the short matches are extended to both sides, leading to locally
maximal segment pairs.

All this is fine-tuned by a couple of parameters: the word size w, the similarity threshold T used when
generating the list of short words to be searched for, and a minimum match score C which applies to HSPs.

The BLAST algorithm for protein sequences operates as follows:

1. The list of all words of length w that have similarity≥ T to some word in the query sequence q is generated.

2. The database sequence d is scanned for all exact matches t of words s in the list.

3. Each such seed (s, t) is extended until its score σ(s, t) falls a certain distance below the best score found for
shorter extensions. All extensions are reported that have score ≥ C.

In practice, w is around 3 for proteins.

Example.

Using words of length 2:

q l n f s a g w
q l

l n
n f

f s
s a

a g
g w

=⇒

Initial
Words
ql
ln
nf
fs
sa
ag
gw

Expanding the initial word list:

Initial
Words Expanded List
ql ql, qm, hl, zl
ln ln, lb
nf nf, af, ny, df, qf, ef, gf, hf, kf, sf, tf, bf, zf
fs fs, fa, fn, fd, fg, fp, ft, fb, ys
sa (nothing scores 8 or higher)
ag ag
gw gw, aw, rw, nw, dw, qw, ew, hw, iw, kw, mw, pw, sw, tw, vw, bw, zw, xw

5002 BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08

Query Sequence of length L

Maximum of L-w+1 words (typically w = 3 for proteins)

} For each word from the query sequence
find the list of words that will score
at least T when scored using a pairscore
matrix (e.g. PAM 250). For typical parameters
there are around 50 words per residue of the query..

(1) For the query find the list of high scoring words of length w.

(2) Compare the word list to the database and identify exact matches.

Database
Sequences

Exact matches of words
from word list

(3) For each word match, extend alignment in both directions to find
alignments that score greater than score threshold S.

Maximal Segment Pairs (MSPs)

With a careful implementation, the list of all words of length w that have similarity ≥ T to some word in
the query sequence q can be produced in time proportional to the number of words in the list.

The similar words are immediately placed in a keyword tree and then, for each word in the tree, all exact
locations of these words in the database d are detected in time linear to the length of d, using a variation of the
Aho-Corasick algorithm for multiple exact string matching.

As BLAST does not allow indels, also the hit extension is very fast.

Note that the use of seeds of length w and the termination of extensions with fading scores are both steps
that speed up the algorithm, but also imply that BLAST is not guaranteed to find all HSPs.

BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08 5003

5.4 BLAST algorithm for DNA sequences

For DNA sequences, BLAST operates as follows:

• The list of all words of length w in the query sequence a is generated.

• The database d is scanned for all hits of words in this list. Blast uses a two-bit encoding for DNA. This
saves space and also search time, as four bases are encoded per byte.

In practice, K is around 12 for DNA.

5.5 The BLAST family

There are a number of different variants of the BLAST program:

• BLASTN: compares a DNA query sequence to a DNA sequence database,

• BLASTP: compares a protein query sequence to a protein sequence database,

• TBLASTN: compares a protein query sequence to a DNA sequence database (6 frames translation),

• BLASTX: compares a DNA query sequence (6 frames translation) to a protein sequence database, and

• TBLASTX: compares a DNA query sequence (6 frames translation) to a DNA sequence database (6 frames
translation).

BLAST is constantly being developed further and many internet services is available, e.g.,
http://www.ncbi.nlm.nih.gov/BLAST/

http://blast.wustl.edu/

5.6 Multiple string matching

The task at hand is to find all occurrences of a given set of r patterns P = {p1, . . . , pr
} in a text T = t1, . . . , tn. Each

pi is a string pi = pi
1, . . . , p

i
mi

. Usually n is much bigger than mi.

Idea of the Aho-Corasick algorithm:

The Aho-Corasick algorithm belongs to the class of prefix-based approaches. We assume that we have read
the text up to position i and that we know the length of the longest suffix of t1, . . . , ti that is also a prefix of some
pattern pk

∈ P.

The Aho-Corasick algorithm maintains a data structure, called the Aho-Corasick automaton, to keep track
of the longest prefix of some pattern that is also a suffix of the text window.

The AC automaton is built on top of another data structure called trie, so we explain this one first.

http://www.ncbi.nlm.nih.gov/BLAST/
http://blast.wustl.edu/

5004 BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08

5.7 The trie data structure

A trie is a compact representation of a set of strings; in our case, the set P. It is a rooted, directed tree. The
path label of a node v is the string L(v) read when traversing the trie from the root to the node v. A node is a
terminal node if its path label is within the set of strings to be represented by the trie. Each pi

∈ P corresponds
to a terminal node.

Example: P = {annual, annually, announce}

0 1 2 3

4 6 8 10 12

5 7 9 11 13

a n n
o

u

u n c e

a l l y

In the following pseudocode, δ(current, pi
j) denotes the successor state reached from state current by the

outgoing edge that is labeled with pi
j. The symbol θ means “undefined”.

The set of terminal states is denoted F (for “final”). (In the code each state has a set F of indices indicating
that it is terminal for the respective strings.)

(1) Trie(P = p1, . . . , pr);
(2) Create an initial non-terminal state root
(3) for i ∈ 1 . . . r do
(4) current = root; j = 1;
(5) while j ≤ mi ∧ δ(current, pi

j) , θ do
(6) current = δ(current, pi

j); j++;
(7) od
(8) while j ≤ mi do
(9) create state state;

(10) δ(current, pi
j) = state; current = state; j++;

(11) od
(12) if current is terminal then
(13) F(current) = F(current) ∪ {i};
(14) else
(15) mark current as terminal ;
(16) F(current) = {i};
(17) fi
(18) od

The size of the trie and the running time of its basic operations depend on the implementation of the
transition function δ.

• We can provide each node with a table of size |Σ|. This yields access in O(1), but may still be worse in
practice because the high space consumption will lead to many processor (L1) cache misses.

• We can use a sorted array of size
∑

p∈P

∣∣∣p∣∣∣ and store only the existing edges. The edge list is accessed using
binary search which takes O(log|Σ|) time per transition.

• In practice, a hash table will be the best compromise for most applications. It uses O(
∑

p∈P

∣∣∣p∣∣∣) space and
usually O(1) time per access (but O(

∑
p∈P

∣∣∣p∣∣∣) time in the worst case).

BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08 5005

5.8 The Aho-Corasick automaton

The Aho-Corasick automaton augments the trie for P with a supply function. Except for the root it holds that
for each node x, the supply link S(x) points to a node y such that L(y) is the longest proper suffix of L(x) that is
represented by a trie node (that means of some string in the input set). S(x) can be the root. The root represents
the empty string, i.e., L(root) = ε.

The supply links can be computed in O(
∑

k

∣∣∣pk
∣∣∣) time while constructing the trie. They are used to perform

safe shifts in the Aho-Corasick algorithm.

Here is an example. The patterns are

P = {aab, ababc, abc, bab}

Let’s conduct a multiple string matching on

T = abaababcbabcbb .

You can see that it really pays off not to search individually
for the four strings. Trie edges

Supply links

a b

a

a

b

b b

b

c

a

c

ababc

abc

bab

aab

P =

Code to create trie Generated trie Code to add supply links

5006 BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08

Aho-Corasick automaton Code to perform search

A “translation table” for the animation

Animation code Our code
q′ (green) current
q (orange) parent
h S
r (pink) down
fail θ
c (cyan) σ

Matches:

abaababcbabcbb

aab

ababc

abc abc

bab bab

Note that when the match for ababc is found, we have to report an occurrence of abc as well. One pattern
can be a suffix of another.

The discussion how we just built the example together with the pseudocode follows.

First the trie is constructed, then it is augmented with the supply links by a breadth-first search (= BFS
traversal.) See the pseudocode below.

Inductively can assume that we have already computed the supply links of all states before state current
in BFS order. Now consider the parent parent of current in the trie and assume that it leads to current via the
symbol σ. That means, δ(parent, σ) = current. The supply link for parent has already been computed. It points
to S(parent).

Let v = L(current) and let u be the longest proper suffix of v that labels a path in the trie, or let u = ε (the
empty string). The string v has the form v′σ, for some string v′. In fact, we have v′ = L(parent).

Thus, if u is non-empty, it must have the form u = u′σ, for some string u′, and in that case u′ is a proper
suffix of v′ that is the label of a path in the trie. In fact, we have u′ = L(S(parent)).

Now, if S(parent) does have an outgoing transition labeled by σ to a state h, i.e., δ(S(parent), σ) = h, then
u′σ = L(S(parent))σ is the longest suffix of v that is the label of a path, namely u′σ = L(h). Hence S(current) has
to be set to h.

If S(parent) does not have an outgoing transition labeled by σ, then we consider the second-longest proper
suffix of v′ that is the label of a path. That is, we consider S(S(parent)), and if that fails, then S(S(S(parent))), and
so on.

BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08 5007

We repeat that until either we find a non-empty suffix of u that that has an outgoing transition labeled with
σ or we reach the initial state.

(1) Build AC(P = p1, . . . , pr);
(2) AC trie = Trie(P); δ is transition function, root initial state
(3) S(init) = θ;
(4) for current in BFS order do
(5) parent = par(current);
(6) σ = label of transition from parent to current;
(7) down = S(parent);
(8) while down , θ ∧ δ(down, σ) = θ do
(9) down = S(down);

(10) od
(11) if down , θ then
(12) S(current) = δ(down, σ);
(13) if S(current) = terminal then
(14) mark current as terminal;
(15) F(current) = F(current) ∪ F(S(current));
(16) fi
(17) else
(18) S(current) = root;
(19) fi
(20) od

Searching in the Aho-Corasick automaton is straightforward and very similar to the building phase. While
scanning the text, we walk through the automaton. Whenever we enter a terminal state we report the set of
strings as matching. If we cannot walk on, we follow supply links to find a safe shift.

5.9 Running time

We start with the search phase, since the time bound is a bit easier to obtain for it than for the preprocessing.

Lemma.
The search phase for the Aho-Corasick algorithm (just reporting whether there exists a match or not) takes
O
(
|T|

)
time.

Proof. We need to bound the number of transitions within the AC automaton. Let σ be the next letter in
T. If the transition to δ(current, σ) is defined, then L(current) increases by 1. Otherwise, L(current) will become
strictly smaller. Since 0 ≤ |L(current)|, it follows that, during the whole search over T, at most |T| times a supply
link is being used – we cannot walk more often upward than downward in the automaton. �

Lemma.
The preprocessing for the Aho-Corasick algorithm takes O

(∑
p∈P

∣∣∣p∣∣∣) time.

Proof. The argument is the similar to the search argument. After the construction of the trie, we conduct a
BFS search. Both clearly need time O

(∑
p∈P

∣∣∣p∣∣∣).
During the construction of the supply links, we process a total of

∑
p∈P

∣∣∣p∣∣∣) characters. For each processed
character we spend constant work except for following already inserted supply links. So in total, we cannot
follow more supply links than there are characters in the patterns.

As a final comment, one can implement the set union in line (15) by a simple concatenation of lists in
constant time, since the sets are disjoint.

5008 BLAST and Aho-Corasick, by Clemens Gröpl, Daniel Huson, November 26, 2014, 13:08

5.10 ‘Advanced’ Aho-Corasick algorithm

We can further speed up the search phase the AC algorithm if we are willing to spend more time for an extended
preprocessing.

Note that it is possible to precompute all transitions implied by the supply links in advance. Essentially,
the formula is

δ(current, σ) = δ(S(current), σ)

for all σ where δ would otherwise be undefined.

The extended preprocessing pays of for relatively small sets of patterns and for small alphabets. However,
we need more space to represent δ.

A compromise is to compute the additional edges “on the fly”, when they are “discovered” for the first
time. This technique is also known as path compression. We can simply add the compressed transitions to
the hash table representing δ. Then the next time we will not need to follow supply links, but will be directly
forwarded to the destination. This strategy was implemented in the first version of the well-known unix
application grep.

	BLAST, FASTA, ...
	Some BLAST terminology
	BLAST algorithm for protein sequences
	BLAST algorithm for DNA sequences
	The BLAST family
	Multiple string matching
	The trie data structure
	The Aho-Corasick automaton
	Running time
	`Advanced' Aho-Corasick algorithm

