Prof. Dr. Knut Reinert, Prof. Dr. Alexander Bockmayr, René Rahn, Annika Röhl

November 30, 2014

Algorithms

WS 2014/15

Exercises 7

1. SAT Problem (NIVEAU I)

The pigeon-hole SAT problem expresses the problem of finding a way to place n pigeons in n-1 pigeon-holes such that no hole contains more than one pigeon. Obviously, this problem is unsatisfiable.

• Model the Pigeon-hole SAT problem. (See script: Literals, clauses, clause-sets)

2. Turing machine simulation (NIVEAU I)

Given a Turing machine M accepting the language $L = \{0^n 1^n \mid n \ge 1\}$ with accepting state q_4 and the next move function δ :

δ	0	1	X	Y	#
q_0	(q_1, X, R)	_	_	(q_3, Y, R)	_
	$(q_1,0,R)$		_	(q_1, Y, R)	_
q_2	$(q_2,0,L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	$(q_4, \#, R)$
q_4	_	_	_	_	_

Simulate M on input 0011 and 001101.

3. Decision problems (NIVEAU II)

Let w_i be the *i*-th word in $\{0,1\}^*$ and M_n the n-th turing machine. Consider:

- the general halting problem K: "Does Turing machine M_n halt for input w_i ?" and
- the special halting problem K' "Does Turing machine M_n halt for input w_n ?"
- (a) Prove that K' is undecidable but semi-decidable.
- (b) Use reduction to prove that K is undecidable.