Prof. Dr. Knut Reinert, Prof. Dr. Alexander Bockmayr, René Rahn, Annika Röhl

November 21, 2014

Algorithms

WS 2014/15

Exercises 6

1. Tree decomposition (Niveau I)

How large is the largest piece of a any tree decomposition for a graph G of n nodes if G is a clique? Prove your answer.

2. Tree decomposition (Niveau II)

As discussed in the lecture the maximum-weighted independent set (WIS) problem can be solved on a graph with small tree width using its tree decomposition. Let T be the tree decomposition of such a graph G rooted at a node r. For any node $t \in T$ let T_t denote the subtree rooted at t and let G_t denote the subgraph associated with this subtree. Further let S be a maximum-weighted independent set of G_t subject to the requirement that $S \cap V_t = U$; that is $w(S) = f_t(U)$ and let S_i denote the intersection of S with the nodes of G_{t_i} .

Prove the following theorem:

 S_i is a maximum-weighted independent set of G_{t_i} , subject to the constraint that $S_i \cap V_t = U \cap V_{t_i}$.

Note, that $w(S) = \sum_{s \in S} w_s$ is the total weight of all nodes in $S \subseteq V_t$, and $f_t(U)$ denotes the maximum weight of an independent set S in G_t , subject to the requirement that $S \cap V_t = U$, where $U \subseteq V_t$ is an independent set.

3. Tree decomposition (Niveau I)

Use the algorithm presented in the lecture to compute a tree decomposition of the graph below. Use w = 4:

