Prof. Dr. Knut Reinert,
Prof. Dr. Alexander Bockmayr, René Rahn,
Annika Röhl
October 23, 2014

Algorithms

WS 2014/15

Exercise 2

1. Bellman-Ford (Niveau I)

Use the Bellman-Ford algorithm (see lecture script) to determine the shortest path from source z to any other node in the graph.

2. Bellman-Ford (Niveau II)

Let $D=(V, A), n=|V|$ be a directed graph. Prove that D contains a circuit of negative length reachable from s if and only if $f_{n}(v) \neq f_{n-1}(v)$, for some $v \in V$, where $f_{k}(v)=\min \{l(P) \mid P$ is an $s-v$ walk traversing at most $k \operatorname{arcs}\}$

3. Longest Common Subsequence (Niveau I)

Compute the longest common subsequence (LCS) for the two sequences $a=$ piece and $b=$ price by first modelling this problem as a graph and then using Dijkstra's algorithm to compute the shortest path.

4. Network Flow (Niveau I)

Assume a flow network with edge and additional vertex capacities. Each vertex v has a limit on the flow that can pass through it. Explain how to transform this flow network into an equivalent flow network without vertex capacities.

