Prof. Dr. Knut Reinert,

Prof. Dr. Alexander Bockmayr,

René Rahn

October 16, 2014

Algorithms

WS 2014/15

Exercises 1

1. Landau Symbols (Niveau I)

Show the following:

- (a) $\forall k, l \in \mathbb{Z}.k > l : n^l = o(n^k)$
- (b) $\forall k, l \in \mathbb{N}.k > l : n^k + n^l = \Theta(n^k)$
- (c) $f = O(2^n) \Leftrightarrow f = 2^{O(n)}$

2. MST - Approximation (Niveau I)

- (a) Construct a complete graph with at least 6 nodes that satisfies the triangle inequality and apply the MST- approximation algorithm to approximate the optimal solution of the TSP.
- (b) Prove that the MST-approximation is a 2-approximation for the TSP.

3. Amortized Analysis (Niveau I)

Assume an array of a certain initial size n. After n insertions the array is full and to insert more elements the array needs to be resized. One approach is to allocate a bigger array and to copy all previously inserted elements into the new array. The cost for insertion and copy of an element is O(1) each.

- (a) How would you choose the size of the new array if you have to allocate additional space to achieve amortized linear runtime?
- (b) Use the potential method and accounting method to show that the amortized cost is indeed linear.

4. Analysis of SELECTION algorithm (Niveau II)

Read the additional PDF document (Additional Material) and solve Exercise 9.3-1