Algorithms

WS 2012/13

Exercises 5

1. Tree decomposition (Niveau I)

How large is the largest piece of a any tree decomposition for a graph G of n nodes if G is a clique? Prove your answer.

2. Tree decomposition (Niveau I)

Prove the following theorem:
Let $G=(V, E)$ be a graph, T be a tree decomposition of G, and (x, y) an edge in T. The deletion of (x, y) divides T into two components X and Y. Let V_{x} and V_{y} be the 'pieces' of x and y, respectively. Then deleting the set $V_{x} \cap V_{y}$ from V disconnects G into the two subgraphs $G_{X}-\left(V_{x} \cap V_{y}\right)$ and $G_{Y}-\left(V_{x} \cap V_{y}\right)$.
(G_{M} for $M=X, Y$ is the subgraph of G that consists of all nodes in the 'pieces' of M.)
3. Tree decomposition (Niveau II) Prove the following theorem:

If graph G contains a $(w+1)$-linked set of size at least $3 w$, then G has tree-width at least w.
Suppose, by way of contradiction, that G has a $(w+1)$-linked set X of size at least $3 w$, and it also has a nonredundant TD $\left(T ;\left\{V_{t}\right\}\right)$ of width less than w. The idea of the proof is to find a piece V_{t} that is "centered" with respect to X, so that when some part of V_{t} is deleted from G, one small subset of X is separated from another.
4. Tree decomposition (Niveau I) Use the algorithm presented in the lecture to compute a tree decomposition of the graph below:

