Algorithms

WS 2012/13

Exercises 4

1. Skip lists (Niveau I)

Compute the expected value for the height (h), search time and space consumption if the probability p for each coin flip to produce a 1 is $1 / 3$.
2. "'sparse"' skip list (Niveau I)

Each node in the skip list has up to two incoming directed edges pointing to other nodes in the skip list.
(a) Which edges are really necessary for a search and which can be removed?
(b) Can you give a rough estimate for the expected number of edges that can be removed?
3. Skip lists (Niveau II) Proof that the height of a skip list has expected value $O(\operatorname{logn})$ with high probability.
Hint: You do not need Chernoff bounds or Markov's inequality to show this.

4. Independencies

Random variables $\left(X_{i}\right)_{i \geq 1}$ are called pairwise independent if for all $1 \leq i<j$ and all r_{i} and r_{j} holds:

$$
\operatorname{Pr}\left(X_{i}=r_{i} \wedge X_{j}=r_{j}\right)=\operatorname{Pr}\left(X_{i}=r_{i}\right) \cdot \operatorname{Pr}\left(X_{j}=s_{j}\right)
$$

Random variables are called mutual independent if for all $n \geq 2$ and all $1 \leq i_{1}<i_{2}<$ $\ldots<i_{n}$ and $r_{1}, r_{2}, \ldots, r_{n}$ holds:

$$
\operatorname{Pr}\left(\bigwedge_{k=1}^{n}\left(X_{i_{k}}=r_{k}\right)\right)=\prod_{k=1}^{n} \operatorname{Pr}\left(X_{i_{k}}=r_{k}\right)
$$

(a) Let X and Y be random variables:
i. Prove that $E(X+Y)=E(X)+E(Y)$.
ii. Assume that X and Y are independent. Prove that $E(X Y)=E(X) E(Y)$
(b) Given the sample space:

$$
U=\{(123),(132),(213),(231),(312),(321),(111),(222),(333)\}
$$

We choose a random element u in U. Let X_{i} the digit in u at position i (for $i=1,2,3$), e.g. $X_{3}=2$ for $u=(312)$. Let N the random variable that equals X_{2}. Prove:
i. $\forall i, r: 1 \leq i \leq 3,1 \leq r \leq 3$ gilt: $\operatorname{Pr}\left(X_{i}=r\right)=\frac{1}{3}$.
ii. X_{1}, X_{2}, and X_{3} pairwise independent.
iii. X_{1}, X_{2}, and X_{3} are not mutual independent.
iv. $E(N)=2$.
v. $\sum_{i=1}^{E(N)} E\left(X_{i}\right)=4$.
vi. $E\left(\sum_{i=1}^{N} X_{i}\right) \neq \sum_{i=1}^{E(N)} E\left(X_{i}\right)$.

