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1. Network Flow (Niveau II) Prove the Theorem:
For a network (V,E, s, t) with capacities cap : E → R+ the maximum value of a flow
is equal to the minimum capacity of an (s, t)-cut:

max{val(f) | f is a flow} = min{cap(S, T ) | (S, T ) is an (s, t)-cut}

Hint: Show that the following conditions are equivalent:

(a) f is a maximum flow.

(b) The residual network Gf contains no augmenting path.

(c) val(f) = cap(S, T ) for some cut (S, T ) of G

2. Network Flow (Niveau I) Assume a flow network with edge and additional vertex
capacities. Each vertex v has a limit on the flow that can pass through it. Explain
how to transform this flow network into an equivalent flow network without vertex
capacities.

3. Ford-Fulkerson (Niveau I)

(a) Use the Ford-Fulkerson algorithm to find a maximum flow in the network
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Start with the initial flow f . An edge label f/c means initial flow f and capacity
c.

(b) Find a minimum cut proving the maximality of the flow.



4. Matching and Bipartite Graphs (Niveau I)

(a) Apply the matching augmenting algorithm for bipartite graphs to the graph below
and compute a maximum cardinality matching from the initial matching.
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