Algorithms

WS 2012/13

Exercises 3

1. Modulo Arithmetic (Niveau II) Prove the following theorem:

For any positive intergers a and n, if $d=\operatorname{gcd}(a, n)$ (the greatest common divisor of a and n), then

$$
\langle a\rangle=\langle d\rangle=\{0, d, 2 d, \ldots, n-d\}
$$

and thus

$$
|\langle a\rangle|=n / d
$$

$(\langle a\rangle:=\{a \cdot i \bmod n \mid i \in \mathbb{N}\})$.
Hint: Use Bezout's lemma. It states that if a and b are nonzero integers with greatest common divisor d, then there exist integers x and y such that $a x+b y=d$
2. Hashing (Niveau II) Consider a version of the division method in which $h(k)=k$ $\bmod m$, where $m=2^{p}-1$ and k is a character string interpreted in radix 2^{p}. Show that if string x can be derived from string y by permuting its characters, then x and y hash to the same value.
3. Expected value (Niveau I) Proof: Define pi $=\operatorname{Pr}$ (exactly i probes access occupied slots)for $\mathrm{i}=0,1,2, \ldots$ (Note that for $i>n, p_{i}=0$). The expected number of probes is then $\sum_{i=0}^{\infty} i \cdot p_{i}$. Now define $q_{i}=\operatorname{Pr}$ (at least i probes access occupied slots). Show that $\sum_{i=0}^{\infty} i \cdot p_{i}=\sum_{i=1}^{\infty} q_{i}$.

