Graph algorithms, by A. Bockmayr, 22. Oktober 2014, 09:29 2005

Il. Network flows

o Network

— Directed graph G=(V,E)
— Sources € V,sinkte V
— Edge capacitiescap : E - R, ={x € R | x > 0}

e Flow: f: E — R, satisfying

1. Flow conservation constraints

fley=). f(e), forallve V\{s,t}

e:target(e)=v e:source(e)=v

2. Capacity constraints
0 < f(e) <cap(e), forallec E

Maximum flow problem

Excessatnode v: excess(v)= Y. fle)—) f(e)

e:target(e)=v e:source(e)=v

If f is a flow, then excess(v) =0, for all v € V'\ {s, t}.

Value of a flow: val(f) def excess(t)

Maximum flow problem:
max{val(f) | fis a flow in G}

Can be seen as a linear programming problem.
Maximum flow problem

Lemma
If fis a flow, then excess(tf) = —excess(s).

Proof: We have

excess(s) +excess(t) = Z excess(v) = 0.
veV

First “=": excess(v) = 0, for v € V' \ {s, t}

Second “=": For any edge e = (v, w), the flow through e appears twice in the sum, positively in excess(w)
and negatively in excess(v).

Cuts

A cutis a partition (S, T) of V,i.e.,, T=V\S.

(S, T)isan (s,t)-cutifs€ Sandte T.

Capacity of the cut (S, T)

cap(S,T)= Y cap(e)
EN(SxT)

e A cutis saturated by f if f(e) = cap(e), forallec EN(Sx T),and f(e)=0,forallec EN(T x S).

2006 Graph algorithms, by A. Bockmayr, 22. Oktober 2014, 09:29

Cuts o

Lemma
If fis aflow and (S, T) an (s, t)-cut, then

valify = Y. fle) —) f(e) < cap(S,T).
ecEN(SxT) ecEN(TxS)

If (S, T) is saturated by f, then val(f) = cap(S, T).

Proof: We have

val(fy = —excess(s) = —) excess(u) = Y e —) fe
ues ecEN(SxT) ecEN(TxS)
< cap(e) = cap(S)
ecEN(SXT)

For a saturated cut, the inequality is an equality.

Remarks
e A saturated cut proves the optimality of a flow.
e To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network Gy for a flow f in G = (V, E) indicates the capacity unused by f. It is defined as follows:

e Gy has the same node set as G.
e For every edge e = (v, w) in G, there are up to two edges € and €” in Gy:

1. if f(e) < cap(e), there is an edge € = (v, w) in Gr with residual capacity r(€') = cap(e) — f(e).
2. if f(e) > 0, there is an edge €’ = (w, v) in Gy with residual capacity r(e") = f(e).

Theorem
Let f be an (s, t)-flow, let G be the residual network w.r.t. f, and let S be the set of all nodes reachable from s in
G.

Graph algorithms, by A. Bockmayr, 22. Oktober 2014, 09:29 2007

1. If t € S, then f is not maximum.

2. Ift &€ S, then (S, V\ S) is a saturated cut and f is maximum.
Proof
If t is reachable from s in G¢, then f is not maximal.

e Let P be apath from sto tin Gy.

e Let d be the minimum residual capacity of an edge in P.
By definition, r(e) > 0, for all edges e in G;. Therefore, 6 > 0.

e Construct a flow ' of value val(f) + 8:

fle)+d, ifeeP
fle)=< fle)—8, ife'eP
f(e), if neither €' nor &’ belongs to P.
e {'is aflow and val(f’) = val(f) + .
Example

If t is not reachable from s in G, then f is maximal.

e Let S be the set of nodes reachable from sin G, and let T = V' \ S.
e There is no edge (v,w) in Grwithve Sandw e T.
e By the definition of Gt:

— f(e) =cap(e), forany ec EN(S x T), and
— f(e)=0,forany e EN(T x S).

e Thus S is saturated and, by the Lemma, f is maximal.
Ford-Fulkerson Algorithm (1955)

1. Start with the zero flow, i.e., f(e) =0, for all e € E.
2. Construct the residual network G.

3. Check whether t is reachable from s in Gt.

2008 Graph algorithms, by A. Bockmayr, 22. Oktober 2014, 09:29

e if not, stop.

e if yes, increase the flow along an augmenting path, and iterate.
Analysis

e Let|V|=nand |E|=m.
e Each iteration takes time O(n+m).

o |f capacities are arbitrary reals, the algorithm may run forever.
Integer capacities

e Suppose capacities are integers, bounded by C.

*

oV def value of maximum flow < Cn.
e All flows constructed are integral (proof by induction).
e Every augmentation increases flow value by at least 1.

e Running time O((n+ m)v*) ~» pseudo-polynomial algorithm
Edmonds-Karp Algorithm (1972)

e Compute a shortest augmenting path, i.e. with a minimum number of arcs.
e Apply breadth-first search (or Dijkstra’s algorithm).
e Number of iterations is bound by nm, leads to an O(nm?) maximum flow algorithm.

e Works also for irrational capacities.

More efficient algorithms exist:

e O(n?m) (Dinic, Push-Relabel)

e O(n®) (FIFO Push-Relabel, ...)
Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson 1954)
For a network (V, E, s, t) with capacities cap : E — R, the maximum value of a flow is equal to the minimum
capacity of an (s, t)-cut:

max{val(f) | fis a flow} = min{cap(S, T) | (S, T) is an (s, t)-cut}

Corollary
For integer capacities cap : E — Z.,, there exists an integer-valued maximum flow f : E — Z,..

