Graph Algorithms

I. Shortest paths

- $D=(V, A)$ directed graph, $s, t \in V$.
- A walk is a sequence $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right), k \geq 0$, where a_{i} is an arc from v_{i-1} to v_{i}, for $i=1, \ldots, k$.
- P is a path, if v_{0}, \ldots, v_{k} are all different.
- If $s=v_{0}$ and $t=v_{k}, P$ is a $s-t$ walk resp. $s-t$ path of length k (i.e., each arc has length 1).
- The distance from s to t is the minimum length of any $s-t$ path (and $+\infty$ if no $s-t$ path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)
Initialization: $V_{0}=\{s\}$
Iteration: $\quad V_{i+1}=\left\{v \in V \backslash\left(V_{0} \cup V_{1} \cup \cdots \cup V_{i}\right) \mid(u, v) \in A\right.$, for some $\left.u \in V_{i}\right\}$, until $V_{i+1}=\emptyset$.

Running time: $O(|A|)$

- V_{i} is the set of nodes with distance i from s.
- The algorithm computes shortest paths from s to all reachable nodes.
- Can be described by a directed tree $T=\left(V^{\prime}, A^{\prime}\right)$ with root s such that each $u-v$ path in T is a shortest $u-v$ path in D.

Shortest paths with non-negative lengths

- Length function $/: A \rightarrow \mathbb{Q}_{+}=\{x \in \mathbb{Q} \mid x \geq 0\}$
- For a walk $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ define $I(P)=\sum_{i=1}^{k} I\left(a_{i}\right)$.

Algorithm (Dijkstra 1959)

Initialization: $U=V, f(s)=0, f(v)=\infty$, for $v \in V \backslash\{s\}$
Iteration: Find $u \in U$ with $f(u)=\min \{f(v) \mid v \in U\}$.
For all $a=(u, v) \in A$ with $f(v)>f(u)+I(a)$ let $f(v)=f(u)+I(a)$.
Let $U \leftarrow U \backslash\{u\}$, until $U=\emptyset$.
Upon termination, $f(v)$ gives the length of a shortest path from s to v.
Running time: $O\left(|V|^{2}\right)$ (can be improved to $O(|A|+|V| \log |V|)$.)

Example

Iteration	u	U	$f[1]$	$f[2]$	$f[3]$	$f[4]$	$f[5]$
0	-	$\{1,2,4,3,5\}$	0	∞	∞	∞	∞
1	1	$\{2,3,4,5\}$	0	1	10	3	∞
2	2	$\{3,4,5\}$	0	1	10	3	6
3	4	$\{3,5\}$	0	1	9	3	5
4	5	$\{3\}$	0	1	6	3	5
5	3	$\}$	0	1	6	3	5

Application: Longest common subsequence

- Sequences $a=a_{1}, \ldots, a_{m}$ and $b=b_{1}, \ldots, b_{n}$
- Find the longest common subsequence of a and b (obtained by removing symbols in a or b).

Modeling as a shortest path problem

- Grid graph with nodes $(i, j), 0 \leq i \leq m, 0 \leq j \leq n$.
- Horizontal and vertical arcs of length 1.
- Diagonal arcs $((i-1, j-1),(i, j))$ of length 0 , if $a_{i}=b_{j}$.

The diagonal arcs on a shortest path from $(0,0)$ to (m, n) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions $I: A \rightarrow \mathbb{Q}$.
- A directed circuit is a walk $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ with $k \geq 1$ and $v_{0}=v_{k}$ such that v_{1}, \ldots, v_{k} and a_{1}, \ldots, a_{k} are all different.
- If $D=(V, A)$ contains a directed circuit of negative length, there exist s - t walks of arbitrary small negative length.

Proposition

Let $D=(V, A)$ be a directed graph without circuits of negative length.
For any $s, t \in V$ for which there exists at least one s - t walk, there exists a shortest s - t walk, which is a path.

Shortest paths with arbitrary lengths

$D=(V, A), n=|V|, I: A \rightarrow \mathbb{Q}$.

Algorithm (Bellman-Ford 1956/58)
Compute $f_{0}, \ldots, f_{n}: V \rightarrow \mathbb{R} \cup\{\infty\}$ in the following way:

Initialization: $f_{0}(s)=0, f_{0}(v)=\infty$, for $v \in V \backslash\{s\}$
Iteration: For $k=1, \ldots, n$ and all $v \in V$:

$$
f_{k}(v)=\min \left\{f_{k-1}(v), \min _{(u, v) \in A}\left(f_{k-1}(u)+l(u, v)\right)\right\}
$$

Running time: $O(|V||A|)$

Example

Iteration k	$f_{k}[1]$	$f_{k}[2]$	$f_{k}[3]$	$f_{k}[4]$	$f_{k}[5]$
0	0	∞	∞	∞	∞
1	0	7	∞	∞	6
2	0	7	2	4	6
3	0	7	2	4	2
4	0	7	-2	4	2

Properties

- For each $k=0, \ldots, n$ and each $v \in V$:

$$
f_{k}(v)=\min \{l(P) \mid P \text { is an } s-v \text { walk traversing at most } k \text { arcs }\}
$$

(by induction)

- If D contains no circuits of negative length, $f_{n-1}(v)$ is the length of a shortest path from s to v.

Finding an explicit shortest path

- When computing f_{0}, \ldots, f_{n} determine a predecessor function $p: V \rightarrow V$ by setting $p(v)=u$ whenever $f_{k+1}(v)=f_{k}(u)+I(u, v)$.
- At termination, $v, p(v), p(p(v)), \ldots, s$ gives the reverse of a shortest $s-v$ path.

Theorem

Given $D=(V, A), s, t \in V$ and $I: A \rightarrow \mathbb{Q}$ such that D contains no circuit of negative length, a shortest s-t path can be found in time $O(|V||A|)$.

Remark
D contains a circuit of negative length reachable from s if and only if $f_{n}(v) \neq f_{n-1}(v)$, for some $v \in V$.

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem
Input: Directed graph $D=(V, A), s, t \in V, I: A \rightarrow \mathbb{Z}, L \in \mathbb{Z}$
Question: Does there exist an s - t path P with $I(P) \leq L$?
is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete.
The longest path problem with non-negative lengths is NP-complete.

Application: Knapsack problem

- Knapsack, volume 8, 5 articles

Article i	Volume a_{i}	Value c_{i}
1	5	4
2	3	7
3	2	3
4	2	5
5	1	4

- Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

- Shortest path model
- Directed graph with nodes $(i, x), 0 \leq i \leq 6,0 \leq x \leq 8$.
- Arcs from $(i-1, x)$ to (i, x) resp. $\left(i, x+a_{i}\right)$ of length 0 resp. $-c_{i}$, for $0 \leq i \leq 5$.
- Arcs from $(5, x)$ to $(6,8)$ of length 0 , for $0 \leq x \leq 6$.
- A shortest path from $(0,0)$ to $(6,8)$ gives an optimal solution.
\rightsquigarrow pseudo-polynomial algorithm
- Linear 0-1 model

$$
\max \left\{4 x_{1}+7 x_{2}+3 x_{3}+5 x_{4}+4 x_{5} \mid 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \leq 8, x_{1}, \ldots, x_{5} \in\{0,1\}\right\}
$$

