Graph Algorithms

I. Shortest paths

- D = (V, A) directed graph, $s, t \in V$.
- A walk is a sequence $P = (v_0, a_1, v_1, ..., a_k, v_k), k \ge 0$, where a_i is an arc from v_{i-1} to v_i , for i = 1, ..., k.
- *P* is a *path*, if $v_0, ..., v_k$ are all different.
- If $s = v_0$ and $t = v_k$, P is a s-t walk resp. s-t path of length k (i.e., each arc has length 1).
- The distance from s to t is the minimum length of any s-t path (and $+\infty$ if no s-t path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

```
Initialization: V_0 = \{s\}

Iteration: V_{i+1} = \{v \in V \setminus (V_0 \cup V_1 \cup \cdots \cup V_i) \mid (u, v) \in A, \text{ for some } u \in V_i\},

until V_{i+1} = \emptyset.
```

Running time: O(|A|)

- V_i is the set of nodes with distance *i* from *s*.
- The algorithm computes shortest paths from *s* to all reachable nodes.
- Can be described by a directed tree T = (V', A') with root s such that each u-v path in T is a shortest u-v path in D.

Shortest paths with non-negative lengths

- Length function $I: A \to \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \ge 0\}$
- For a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ define $I(P) = \sum_{i=1}^k I(a_i)$.

Algorithm (Dijkstra 1959)

```
Initialization: U = V, f(s) = 0, f(v) = \infty, for v \in V \setminus \{s\}
Iteration: Find u \in U with f(u) = \min\{f(v) \mid v \in U\}.
For all a = (u, v) \in A with f(v) > f(u) + I(a) let f(v) = f(u) + I(a).
Let U \leftarrow U \setminus \{u\}, until U = \emptyset.
```

Upon termination, f(v) gives the length of a shortest path from s to v.

Running time: $O(|V|^2)$ (can be improved to $O(|A| + |V| \log |V|)$.)

Example

Iteration	и	U	<i>f</i> [1]	<i>f</i> [2]	f[3]	<i>f</i> [4]	f[5]
0	_	{1,2,4,3,5}	0	∞	∞	∞	∞
1	1	$\{2,3,4,5\}$	0	1	10	3	∞
2	2	$\{3,4,5\}$	0	1	10	3	6
3	4	$\{3,5\}$	0	1	9	3	5
4	5	{3}	0	1	6	3	5
5	3	{}	0	1	6	3	5

Application: Longest common subsequence

- Sequences $a = a_1, \dots, a_m$ and $b = b_1, \dots, b_n$
- Find the longest common subsequence of a and b (obtained by removing symbols in a or b).

Modeling as a shortest path problem

- Grid graph with nodes (i,j), $0 \le i \le m$, $0 \le j \le n$.
- Horizontal and vertical arcs of length 1.
- Diagonal arcs ((i-1,j-1),(i,j)) of length 0, if $a_i = b_i$.

The diagonal arcs on a shortest path from (0,0) to (m,n) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions $I: A \to \mathbb{Q}$.
- A directed circuit is a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ with $k \ge 1$ and $v_0 = v_k$ such that $v_1, ..., v_k$ and $a_1, ..., a_k$ are all different.
- If D = (V, A) contains a directed circuit of negative length, there exist s-t walks of arbitrary small negative length.

Proposition

Let D = (V, A) be a directed graph without circuits of negative length.

For any $s, t \in V$ for which there exists at least one s-t walk, there exists a shortest s-t walk, which is a path.

Shortest paths with arbitrary lengths

$$D = (V, A), n = |V|, I : A \rightarrow \mathbb{Q}.$$

Algorithm (Bellman-Ford 1956/58)

Compute $f_0, ..., f_n : V \to \mathbb{R} \cup \{\infty\}$ in the following way:

Initialization:
$$f_0(s) = 0$$
, $f_0(v) = \infty$, for $v \in V \setminus \{s\}$
Iteration: For $k = 1, ..., n$ and all $v \in V$:
$$f_k(v) = \min\{f_{k-1}(v), \min_{(u,v) \in A}(f_{k-1}(u) + I(u,v))\}$$

Running time: O(|V||A|)

Example

Iteration k	$f_{k}[1]$	$f_{k}[2]$	$f_{k}[3]$	$f_k[4]$	$f_{k}[5]$
0	0	∞	∞	∞	∞
1	0	7	∞	∞	6
2	0	7	2	4	6
3	0	7	2	4	2
4	0	7	-2	4	2

Properties

• For each k = 0, ..., n and each $v \in V$:

 $f_k(v) = \min\{I(P) \mid P \text{ is an } s\text{-}v \text{ walk traversing at most } k \text{ arcs}\}$

(by induction)

• If *D* contains no circuits of negative length, $f_{n-1}(v)$ is the length of a shortest path from *s* to *v*.

Finding an explicit shortest path

- When computing $f_0, ..., f_n$ determine a predecessor function $p: V \to V$ by setting p(v) = u whenever $f_{k+1}(v) = f_k(u) + l(u, v)$.
- At termination, $v, p(v), p(p(v)), \dots, s$ gives the reverse of a shortest s-v path.

Theorem

Given $D = (V, A), s, t \in V$ and $I : A \to \mathbb{Q}$ such that D contains no circuit of negative length, a shortest s-t path can be found in time O(|V||A|).

Remark

D contains a circuit of negative length reachable from *s* if and only if $f_n(v) \neq f_{n-1}(v)$, for some $v \in V$.

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem

Input: Directed graph $D = (V, A), s, t \in V, I : A \to \mathbb{Z}, L \in \mathbb{Z}$ *Question:* Does there exist an s-t path P with $I(P) \le L$?

is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete.

The longest path problem with non-negative lengths is NP-complete.

Application: Knapsack problem

• Knapsack, volume 8, 5 articles

Article i	Volume a _i	Value c_i	
1	5	4	
2	3	7	
3	2	3	
4	2	5	
5	1	4	

• Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

- Shortest path model
 - Directed graph with nodes (i, x), $0 \le i \le 6$, $0 \le x \le 8$.
 - Arcs from (i-1,x) to (i,x) resp. $(i,x+a_i)$ of length 0 resp. $-c_i$, for $0 \le i \le 5$.
 - Arcs from (5, x) to (6, 8) of length 0, for $0 \le x \le 6$.
 - A shortest path from (0,0) to (6,8) gives an optimal solution.
 - → pseudo-polynomial algorithm
- Linear 0-1 model

$$\max\{4x_1+7x_2+3x_3+5x_4+4x_5 \mid 5x_1+3x_2+2x_3+2x_4+x_5 \leq 8, x_1, \dots, x_5 \in \{0,1\}\}$$