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II. Network flows

• Network

– Directed graph G = (V ,E)

– Source s ∈ V , sink t ∈ V

– Edge capacities cap : E → R+ = {x ∈ R | x ≥ 0}

• Flow: f : E → R+ satisfying

1. Flow conservation constraints

∑
e:target(e)=v

f (e) = ∑
e:source(e)=v

f (e), for all v ∈ V \{s, t}

2. Capacity constraints
0≤ f (e)≤ cap(e), for all e ∈ E

Maximum flow problem

• Excess at node v : excess(v ) = ∑
e:target(e)=v

f (e)− ∑
e:source(e)=v

f (e)

• If f is a flow, then excess(v ) = 0, for all v ∈ V \{s, t}.

• Value of a flow: val(f ) def= excess(t)

• Maximum flow problem:
max{val(f ) | f is a flow in G}

• Can be seen as a linear programming problem.

Maximum flow problem (2)

Lemma
If f is a flow, then excess(t) =−excess(s).

Proof: We have
excess(s) + excess(t) = ∑

v∈V
excess(v ) = 0.

• First “=”: excess(v ) = 0, for v ∈ V \{s, t}

• Second “=”: For any edge e = (v ,w), the flow through e appears twice in the sum, positively in excess(w)
and negatively in excess(v ).

Cuts

• A cut is a partition (S,T ) of V , i.e., T = V \S.

• (S,T ) is an (s, t)-cut if s ∈ S and t ∈ T .

• Capacity of the cut (S,T )
cap(S,T ) = ∑

E∩(S×T )

cap(e)

• A cut is saturated by f if f (e) = cap(e), for all e ∈ E ∩ (S×T ), and f (e) = 0, for all e ∈ E ∩ (T ×S).
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Cuts (2)

Lemma
If f is a flow and (S,T ) an (s, t)-cut, then

val(f ) = ∑
e∈E∩(S×T )

f (e) − ∑
e∈E∩(T×S)

f (e) ≤ cap(S,T ).

If (S,T ) is saturated by f , then val(f ) = cap(S,T ).

Proof: We have

val(f ) = −excess(s) = −∑
u∈S

excess(u) = ∑
e∈E∩(S×T )

f (e)− ∑
e∈E∩(T×S)

f (e)

≤ ∑
e∈E∩(S×T )

cap(e) = cap(S)

For a saturated cut, the inequality is an equality.
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Remarks

• A saturated cut proves the optimality of a flow.

• To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network Gf for a flow f in G = (V ,E) indicates the capacity unused by f . It is defined as follows:

• Gf has the same node set as G.

• For every edge e = (v ,w) in G, there are up to two edges e′ and e′′ in Gf :

1. if f (e) < cap(e), there is an edge e′ = (v ,w) in Gf with residual capacity r (e′) = cap(e)− f (e).

2. if f (e) > 0, there is an edge e′′ = (w ,v ) in Gf with residual capacity r (e′′) = f (e).
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Theorem
Let f be an (s, t)-flow, let Gf be the residual network w.r.t. f , and let S be the set of all nodes reachable from s in
Gf .
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1. If t ∈ S, then f is not maximum.

2. If t 6∈ S, then (S,V \S) is a saturated cut and f is maximum.

Proof

If t is reachable from s in Gf , then f is not maximal.

• Let P be a path from s to t in Gf .

• Let δ be the minimum residual capacity of an edge in P.
By definition, r (e) > 0, for all edges e in Gf . Therefore, δ > 0.

• Construct a flow f ′ of value val(f ) + δ:

f ′(e) =


f (e) + δ, if e′ ∈ P
f (e)−δ, if e′′ ∈ P
f (e), if neither e′ nor e′′ belongs to P.

• f ′ is a flow and val(f ′) = val(f ) + δ.

Example
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If t is not reachable from s in Gf , then f is maximal.

• Let S be the set of nodes reachable from s in Gf , and let T = V \S.

• There is no edge (v ,w) in Gf with v ∈ S and w ∈ T .

• By the definition of Gf :

– f (e) = cap(e), for any e ∈ E ∩ (S×T ), and

– f (e) = 0, for any e ∈ E ∩ (T ×S).

• Thus S is saturated and, by the Lemma, f is maximal.

Ford-Fulkerson Algorithm (1955)

1. Start with the zero flow, i.e., f (e) = 0, for all e ∈ E .

2. Construct the residual network Gf .

3. Check whether t is reachable from s in Gf .
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• if not, stop.

• if yes, increase the flow along an augmenting path, and iterate.

Analysis

• Let |V | = n and |E | = m.

• Each iteration takes time O(n + m).

• If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

• Suppose capacities are integers, bounded by C.

• v∗ def= value of maximum flow ≤ Cn.

• All flows constructed are integral (proof by induction).

• Every augmentation increases flow value by at least 1.

• Running time O((n + m)v∗) pseudo-polynomial algorithm

Edmonds-Karp Algorithm (1972)

• Compute a shortest augmenting path, i.e. with a minimum number of arcs.

• Apply breadth-first search (or Dijkstra’s algorithm).

• Number of iterations is bound by nm, leads to an O(nm2) maximum flow algorithm.

• Works also for irrational capacities.

More efficient algorithms exist:

• O(n2m) (Dinic, Push-Relabel)

• O(n3) (FIFO Push-Relabel, . . . )

Max-Flow Min-Cut Theorem

Theorem (Ford-Fulkerson 1954)
For a network (V ,E ,s, t) with capacities cap : E → R+ the maximum value of a flow is equal to the minimum
capacity of an (s, t)-cut:

max{val(f ) | f is a flow} = min{cap(S,T ) | (S,T ) is an (s, t)-cut}

Corollary
For integer capacities cap : E → Z+, there exists an integer-valued maximum flow f : E → Z+.
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