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Introduction

This chapter will familiarize you with the framework we shall use through-
out the book to think about the design and analysis of algorithms. It is
self-contained, but it does include several references to material that will
be introduced in Part I.

We begin with a discussion of computational problems in general and
of the algorithms needed to solve them, with the problem of sorting as our
running example. We introduce a “pseudocode” that should be familiar
to readers who have done computer programming to show how we shall
specify our algorithms. Insertion sort, a simple sorting algorithm, serves
as an initial example. We analyze the running time of insertion sort, intro-
ducing a notation that focuses on how that time increases with the number
of items to be sorted. We also introduce the divide-and-conquer approach
to the design of algorithms and use it to develop an algorithm called merge
sort. We end with a comparison of the two sorting algorithms.

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some value, or
set of values, as output. An algorithm is thus a sequence of computational
steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified com-
putational problem. The statement of the problem specifies in general terms
the desired input/output relationship. The algorithm describes a specific
computational procedure for achieving that input/output relationship.

We begin our study of algorithms with the problem of sorting a sequence
of numbers into nondecreasing order. This problem arises frequently in
practice and provides fertile ground for introducing many standard design
techniques and analysis tools. Here is how we formally define the sorting
problem:
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Input: A sequence of n numbers (a;,a,... ,dn).

Output: A permutation (reordering) (a},d,...,a,) of the input sequence
such that ] < a) <+ < a,.

Given an input sequence such as (31,41,59,26,41, 58), a sorting algorithm
returns as output the sequence (26, 31,41,41,58,59). Such an input se-
quence is called an instance of the sorting problem. In general, an instance
of a problem consists of all the inputs (satisfying whatever constraints are
imposed in the problem statement) needed to compute a solution to the
problem.

Sorting is a fundamental operation in computer science (many programs
use it as an intermediate step), and as a result a large number of good
sorting algorithms have been developed. Which algorithm is best for a
given application depends on the number of items to be sorted, the extent
to which the items are already somewhat sorted, and the kind of storage
device to be used: main memory, disks, or tapes.

An algorithm is said to be correct if, for every input instance, it halts
with the correct output. We say that a correct algorithm solves the given
computational problem. An incorrect algorithm might not halt at all on
some input instances, or it might halt with other than the desired answer.
Contrary to what one might expect, incorrect algorithms can sometimes be
useful, if their error rate can be controlled. We shall see an example of this
in Chapter 33 when we study algorithms for finding large prime numbers.
Ordinarily, however, we shall be concerned only with correct algorithms.

An algorithm can be specified in English, as a computer program, Or
even as a hardware design. The only requirement is that the specification
must provide a precise description of the computational procedure to be
followed.

In this book, we shall typically describe algorithms as programs written
in a pseudocode that is very much like C, Pascal, or Algol. If you have
been introduced to any of these languages, you should have little trouble
reading our algorithms. What separates pseudocode from “real” code is
that in pseudocode, we employ whatever expressive method is most clear
and concise to specify a given algorithm. Sometimes, the clearest method
is English, so do not be surprised if you come across an English phrase
or sentence embedded within a section of “real” code. Another differ-
ence between pseudocode and real code is that pseudocode is not typically
concerned with issues of software engineering. Issues of data abstraction,
modularity, and error handling are often ignored in order to convey the
essence of the algorithm more concisely.

Insertion sort

We start with insertion sort, which is an efficient algorithm for sorting a
small number of elements. Insertion sort works the way many people sort
a bridge or gin rummy hand. We start with an empty left hand and the
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Figure 1.1 Sorting a hand of cards using insertion sort.

cards face down on the table. We then remove one card at a time from the
table and insert it into the correct position in the left hand. To find the
correct position for a card, we compare it with each of the cards already
in the hand, from right to left, as illustrated in Figure 1.1.

Our pseudocode for insertion sort is presented as a procedure called
INSERTION-SORT, which takes as a parameter an array A[1..n] containing
a sequence of length n that is to be sorted. (In the code, the number n
of elements in A is denoted by length{A].) The input numbers are sorted
in place: the numbers are rearranged within the array A, with at most
a constant number of them stored outside the array at any time. The
input array A contains the sorted output sequence when INSERTION-SORT
is finished.

INSERTION-SORT(A)

1 for j — 2 to length[A]
do key — A[j]
> Insert A[j] into the sorted sequence A[1..j — 1].
i—j-—1
while i > 0 and A[i] > key
do A[i+ 1] < Afi]
i—i—-1
Ali + 1] « key

0 1A Wn b W

Figure 1.2 shows how this algorithm works for 4 = (5,2,4,6,1,3). The
index j indicates the “current card” being inserted into the hand. Array
elements A[l..j — 1] constitute the currently sorted hand, and elements
A[j + 1..n] correspond to the pile of cards still on the table. The index j
moves left to right through the array. At each iteration of the “outer” for
loop, the element A[;] is picked out of the array (line 2). Then, starting in
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1 2 3 4 5 6 done

Figure 1.2 The operation of INSERTION-SORT on the array 4 = (5,2,4,6,1,3).
The position of index j is indicated by a circle.

position j — 1, elements are successively moved one position to the right
until the proper position for 4[] is found (lines 4-7), at which point 1t 18
inserted (line 8).

Pseudocode conventions

We use the following conventions in our pseudocode.

1. Indentation indicates block structure. For example, the body of the
for loop that begins on line 1 consists of lines 2-8, and the body of
the while loop that begins on line 5 contains lines 6-7 but not line 8.
Our indentation style applies to if-then-else statements as well. Using
indentation instead of conventional indicators of block structure, such
as begin and end statements, greatly reduces clutter while preserving, or
even enhancing, clarity.!

2. The looping constructs while, for, and repeat and the conditional con-
structs if, then, and else have the the same interpretation as in Pascal.

3. The symbol “i>” indicates that the remainder of the line is a comment.

4. A multiple assignment of the form i « j — e assigns to both variables
i and j the value of expression e; it should be treated as equivalent to
the assignment j «— e followed by the assignment i — j.

5. Variables (such as i, j, and key) are local to the given procedure. We
shall not use global variables without explicit indication.

1n real programming languages, it is generally not advisable to use indentation alone to
indicate block structure, since levels of indentation are hard to determine when code is split
across pages.
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6. Array elements are accessed by specifying the array name followed by
the index in square brackets. For example, A[i] indicates the ith element
of the array 4. The notation “..” is used to indicate a range of values
within an array. Thus, 4[1.. ] indicates the subarray of 4 consisting
of elements A[1], A[2],..., A[J].

7. Compound data are typically organized into objects, which are com-
prised of attributes or fields. A particular field is accessed using the field
name followed by the name of its object in square brackets. For exam-
ple, we treat an array as an object with the attribute length indicating
how many elements it contains. To specify the number of elements in
an array A, we write length[A]. Although we use square brackets for
both array indexing and object attributes, it will usually be clear from
the context which interpretation is intended.

A variable representing an array or object is treated as a pointer to the
data representing the array or object. For all fields f of an object x,
setting y « x causes f[y] = fIx]. Moreover, if we now set f[x] « 3,
then afterward not only is f[x] = 3, but f[y] = 3 as well. In other
words, x and y point to (“are”) the same object after the assignment
Yy« X.

Sometimes, a pointer will refer to no object at all. In this case, we give
it the special value NIL.

8. Parameters are passed to a procedure by value: the called procedure
receives its own copy of the parameters, and if it assigns a value to a
parameter, the change is not seen by the calling routine. When objects
are passed, the pointer to the data representing the object is copied, but
the object’s fields are not. For example, if x is a parameter of a called
procedure, the assignment x « y within the called procedure is not
visible to the calling procedure. The assignment f[x] — 3, however, is
visible.

Exercises

1.1-1
Using Figure 1.2 as a model, illustrate the operation of INSERTION-SORT
on the array 4 = (31,41, 59,26,41, 58).

L1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead
of nondecreasing order.

1.1-3
Consider the searching problem:
Input: A sequence of » numbers 4 = (a1, a,,...,a,) and a value v.

Output: An index i such that v = A[i] or the special value NIL if v does
not appear in A.
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Write pseudocode for linear search, which scans through the sequence,
looking for v.

1.1-4

Consider the problem of adding two n-bit binary integers, stored in two
n-element arrays A and B. The sum of the two integers should be stored
in binary form in an (n + 1)-element array C. State the problem formally
and write pseudocode for adding the two integers.

1.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the
algorithm requires. Occasionally, resources such as memory, communica-
tion bandwidth, or logic gates are of primary concern, but most often it is
computational time that we want to measure. Generally, by analyzing sev-
eral candidate algorithms for a problem, a most efficient one can be easily
identified. Such analysis may indicate more than one viable candidate, but
several inferior algorithms are usually discarded in the process.

Before we can analyze an algorithm, we must have a model of the imple-
mentation technology that will be used, including a model for the resources
of that technology and their costs. For most of this book, we shall assume a
generic one-processor, random-access machine (RAM) model of computa-
tion as our implementation technology and understand that our algorithms
will be implemented as computer programs. In the RAM model, instruc-
tions are executed one after another, with no concurrent operations. In
later chapters, however, we shall have occasion to investigate models for
parallel computers and digital hardware.

Analyzing even a simple algorithm can be a challenge. The mathematical
tools required may include discrete combinatorics, elementary probability
theory, algebraic dexterity, and the ability to identify the most significant
terms in a formula. Because the behavior of an algorithm may be different
for each possible input, we need a means for summarizing that behavior
in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a
given algorithm, we still face many choices in deciding how to express
our analysis. One immediate goal is to find a means of expression that is
simple to write and manipulate, shows the important characteristics of an
algorithm’s resource requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input:
sorting a thousand numbers takes longer than sorting three numbers. More-
over, INSERTION-SORT can take different amounts of time to sort two input
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sequences of the same size depending on how nearly sorted they already
are. In general, the time taken by an algorithm grows with the size of the
input, so it is traditional to describe the running time of a program as a
function of the size of its input. To do so, we need to define the terms
“running time” and “size of input” more carefully.

The best notion for input size depends on the problem being studied. For
many problems, such as sorting or computing discrete Fourier transforms,
the most natural measure is the number of items in the input—for example,
the array size n for sorting. For many other problems, such as multiplying
two integers, the best measure of input size is the fotal number of bits
needed to represent the input in ordinary binary notation. Sometimes, it
is more appropriate to describe the size of the input with two numbers
rather than one. For instance, if the input to an algorithm is a graph, the
input size can be described by the numbers of vertices and edges in the
graph. We shall indicate which input size measure is being used with each
problem we study.

The running time of an algorithm on a particular input is the number
of primitive operations or “steps” executed. It is convenient to define the
notion of step so that it is as machine-independent as possible. For the

‘moment, let us adopt the following view. A constant amount of time

is required to execute each line of our pseudocode. One line may take
a different amount of time than another line, but we shall assume that
each execution of the ith line takes time c;, where ¢; is a constant. This
viewpoint is in keeping with the RAM model, and it also reflects how the
pseudocode would be implemented on most actual computers.?

In the following discussion, our expression for the running time of
INSERTION-SORT will evolve from a messy formula that uses all the state-
ment costs ¢; to a much simpler notation that is more concise and more
easily manipulated. This simpler notation will also make it easy to deter-
mine whether one algorithm is more efficient than another.

We start by presenting the INSERTION-SORT procedure with the time
“cost” of each statement and the number of times each statement is ex-
ecuted. For each j = 2,3,...,n, where n = length[A], we let ¢; be the
number of times the while loop test in line 5 is executed for that value
of j. We assume that comments are not executable statements, and so
they take no time.

2There are some subtleties here. Computational steps that we specify in English are often
variants of a procedure that requires more than just a constant amount of time. For example,
later in this book we might say “sort the points by x-coordinate,” which, as we shall see, takes
more than a constant amount of time. Also, note that a statement that calls a subroutine takes
constant time, though the subroutine, once invoked, may take more. That is, we separate
the process of calling the subroutine—passing parameters to it, etc.—from the process of
executing the subroutine.
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INSERTION-SORT(A) cost  times
1 for j — 2 to length[A] 1 n
2 do key — A[J] 1) n-—1
3 > Insert A[j] into the sorted
> sequence A[l..j—1]. 0 n-—1
4 ie—j—1 ¢ n-1
5 while i > 0 and A[i] > key ¢ 2;22 t
6 do A[i+ 1] — A[i] Co Z;’zz(tj -1
7 i—i-1 C7 27=2(tj—1)
8 Ali + 1] — key Ccs n-1

The running time of the algorithm is the sum of running times for each
statement executed; a statement that takes ¢; steps to execute and is exe-
cuted 7 times will contribute ¢;n to the total running time.> To compute
T(n), the running time of INSERTION-SORT, we sum the products of the
cost and times columns, obtaining

n n
T(n) = cn+ce(n—1)+can—1)+csy 1 +eg» (L= 1)
=2 =

+C7i(lj —1)+cg(n—1).
=2

Even for inputs of a given size, an algorithm’s running time may depend
on which input of that size is given. For example, in INSERTION-SORT, the

best case occurs if the array is already sorted. For each j = 2,3,..., fl’ we
then find that A[i] < key in line 5 when i has its initial value of j — 1.
Thus ¢; =1 for j =2,3,...,n, and the best-case running time is

T(n) = an+ca(n—1)+ah-1)+ cs(n—1)+cg(n—1)

= (6‘1+C2+C4+C5+6‘8)n—(C2+C4+C5+Cg).

This running time can be expressed as an + b for constants a and b that
depend on the statement costs ¢;; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the
worst case results. We must compare each element A[j] with each element
in the entire sorted subarray A[1..j — 1], and so t; = j for j =2, 3,...,n.
Noting that

" n(n+1)
D
Jj=2

and

3This characteristic does not necessarily hold for a resource such as memory. A statement
that references m words of memory and is executed n times does not necessarily consume
mn words of memory in total.
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n

. _n(n—1)
Z(]‘“l)-—T

J=2

(we shall review these summations in Chapter 3), we find that in the worst
case, the running time of INSERTION-SORT 1s

T(n) = c1n+cz(n - 1) +c4(n_ 1) + s (n(n+ 1) _ 1)

2
-1 —
+ Cg (_n(nz ))+C7 (_n(nz 1))+C3(I’l—1)
= (S S Y, G _G% _a
= (2+2+2)n +(C1+C2+C4+2 > 2+C3)n

—~(cy+cs+cs+cg) .

This worst-case running time can be expressed as an’+bn+ ¢ for constants
a, b, and ¢ that again depend on the statement costs ¢;; it is thus a quadratic
Junction of n.

Typically, as in insertion sort, the running time of an algorithm is fixed
for a given input, although in later chapters we shall see some interesting
“randomized” algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which
the input array was already sorted, and the worst case, in which the input
array was reverse sorted. For the remainder of this book, though, we shall
usually concentrate on finding only the worst-case running time, that is, the
longest running time for any input of size n. We give three reasons for
this orientation.

» The worst-case running time of an algorithm is an upper bound on the
running time for any input. Knowing it gives us a guarantee that the
algorithm will never take any longer. We need not make some educated
guess about the running time and hope that it never gets much worse.

» For some algorithms, the worst case occurs fairly often. For example, in
searching a database for a particular piece of information, the searching
algorithm’s worst case will often occur when the information is not
present in the database. In some searching applications, searches for
absent information may be frequent.

« The “average case” is often roughly as bad as the worst case. Suppose
that we randomly choose # numbers and apply insertion sort. How long
does it take to determine where in subarray A[l .. j—1] to insert element
A[j]? On average, half the elements in A[1l..j — 1] are less than A[j],
and half the elements are greater. On average, therefore, we check half
of the subarray A[1..j — 1], so t; = j/2. If we work out the resulting
average-case running time, it turns out to be a quadratic function of the
input size, just like the worst-case running time.
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In some particular cases, we shall be interested in the average-case or
expected running time of an algorithm. One problem with performing
an average-case analysis, however, is that it may not be apparent what
constitutes an “average” input for a particular problem. Often, we shall
assume that all inputs of a given size are equally likely. In practice, this
assumption may be violated, but a randomized algorithm can sometimes
force it to hold.

Order of growth

We have used some simplifying abstractions to ease our analysis of the
INSERTION-SORT procedure. First, we ignored the actual cost of each state-
ment, using the constants ¢; to represent these costs. Then, we observed
that even these constants give us more detail than we really need: the
worst-case running time is an’? + bn + ¢ for some constants a, b, and ¢
that depend on the statement costs ¢;. We thus ignored not only the actual
statement costs, but also the abstract costs ¢;.

We shall now make one more simplifying abstraction. It is the rate
of growth, or order of growth, of the running time that really interests
us. We therefore consider only the leading term of a formula (e.g., an?),
since the lower-order terms are relatively insignificant for large n. We also
ignore the leading term’s constant coefficient, since constant factors are less
significant than the rate of growth in determining computational efficiency
for large inputs. Thus, we write that insertion sort, for example, has a
worst-case running time of ©(n?) (pronounced “theta of n-squared”). We
shall use ©-notation informally in this chapter; it will be defined precisely
in Chapter 2.

We usually consider one algorithm to be more efficient than another if
its worst-case running time has a lower order of growth. This evaluation
may be in error for small inputs, but for large enough inputs a ©(n?)
algorithm, for example, will run more quickly in the worst case than a
©(n?3) algorithm.

Exercises

1.2-1

Consider sorting 7 numbers stored in array 4 by first finding the smallest
element of A and putting it in the first entry of another array B. Then
find the second smallest element of A and put it in the second entry of B.
Continue in this manner for the » elements of A. Write pseudocode for
this algorithm, which is known as selection sort. Give the best-case and
worst-case running times of selection sort in ©-notation.
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1.2-2

Consider linear search again (see Exercise 1.1-3). How many elements of
the input sequence need to be checked on the average, assuming that the
element being searched for is equally likely to be any element in the array?
How about in the worst case? What are the average-case and worst-case
running times of linear search in ®-notation? Justify your answers.

1.2-3
Consider the problem of determining whether an arbitrary sequence {xj,

X2,...,X,) of n numbers contains repeated occurrences of some number.
Show that this can be done in O(nlgn) time, where Ig » stands for log, n.

1.2-4

Consider the problem of evaluating a polynomial at a point. Given n
cosgilcien;s ao, 4, ...,4,~1 and a real number x, we wish to compute
Y iso aix'. Describe a straightforward ©(n?)-time algorithm for this prob-
lem. Describe a ©(n)-time algorithm that uses the following method
(called Horner’s rule) for rewriting the polynomial:

Zaix’ =(- (@ X+ aq2)x+---+a)x+ap .

1.2-5
Express the function 73/1000 — 100n2 — 100x + 3 in terms of ®-notation.

1.2-6

How can we modify almost any algorithm to have a good best-case running
time?

1.3 Designing algorithms

There are many ways to design algorithms. Insertion sort uses an incremen-
tal approach: having sorted the subarray A[1..j — 1], we insert the single
element A[j] into its proper place, yielding the sorted subarray A[l .. j].
In this section, we examine an alternative design approach, known as
“divide-and-conquer.” We shall use divide-and-conquer to design a sorting
algorithm whose worst-case running time is much less than that of insertion
sort. One advantage of divide-and-conquer algorithms is that their running

Fimes are often easily determined using techniques that will be introduced
in Chapter 4.
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1.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem,
they call themselves recursively one or more times t0 deal with closely re-
lated subproblems. These algorithms typically follow a divide-and-conquer
approach: they break the problem into several subproblems that are similar
to the original problem but smaller in size, solve the subproblems recur-
sively, and then combine these solutions to create a solution to the original
problem.

The divide-and-conquer paradigm involves three steps at each level of
the recursion: '
Divide the problem into a number of subproblems.

Conquer the subproblems by solving them recursively. If the subprob-
lem sizes are small enough, however, just solve the subproblems in a
straightforward manner.

Combine the solutions to the subproblems into the solution for the original
problem.

The merge sort algorithm closely follows the divide-and-conquer para-
digm. Intuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences
of n/2 elements each.

Conguer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted an-
Swer.

We note that the recursion “bottoms out” when the sequence to be sorted

has length 1, in which case there is no work to be done, since every se-

quence of length 1 is already in sorted order.

The key operation of the merge sort algorithm is the merging of two
sorted sequences in the «combine” step. To perform the merging, we use
an auxiliary procedure MERGE(4,D,4,7), where A4 is an array and p, ¢,
and r are indices numbering elements of the array such that p < g <T.
The procedure assumes that the subarrays A[p..q] and A[g + 1..r] are in
sorted order. It merges them to form a single sorted subarray that replaces
the current subarray A[p..rl.

Although we leave the pseudocode as an exercise (see Exercise 1.3-2), it
is easy to imagine a MERGE procedure that takes time O(n), where n =
r — p + 1 is the number of elements being merged. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each
pile is sorted, with the smallest cards on top. We wish to merge the two
piles into a single sorted output pile, which is to be face down on the table.
Our basic step consists of choosing the smaller of the two cards on top of
the face-up piles, removing it from its pile (which exposes a new top card),
and placing this card face down onto the output pile. We repeat this step
until one input pile is empty, at which time we just take the remaining
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input pile and place it face down onto the output pile. Computationall
each basic step takes constant time, since we are checking just two toy’
cards. Since we perform at most » basic steps, merging takes ©(n) timep
Wg can now use the MERGE procedure as a subroutine in the merge so'rt
algorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in the
subarray A[p..r]. If p > r, the subarray has at most one element and is
Fherefore already sorted. Otherwise, the divide step simply computes an
index g that partitions A[p..r] into two subarrays: A[p..q], containin
[n/2] elements, and A[g + 1..r], containing |n/2] elements.“’ ¢

MERGE-SORT(4, p, r)

1 ifp<r

2 theng « [(p+7)/2]

3 MERGE-SORT(A,p, q)

4 MERGE-SORT(A,q + 1,71)
5 MERGE(4, p, q,t)

To sort the entire sequence 4 = (A[1], A[2],..., A[n]), we call MERGE-
SORT(/"I, 1, length[ A]), where once again length[A] = n. If we look at the
ope‘ratlon of the procedure bottom-up when n is a power of two, the al-
gorithm consists of merging pairs of 1-item sequences to form sc;rted se-
quences of length 2, merging pairs of sequences of length 2 to form sorted
sequences of length 4, and so on, until two sequences of length n/2 are

ms:rged to form the final sorted sequence of length n. Figure 1.3 illustrates
this process.

1.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, its running time can
often be described by a recurrence equation or recurrence, which describes
tpe overall running time on a problem of size » in tern;s of the running
time on smaller inputs. We can then use mathematical tools to solve the
recurrence and provide bounds on the performance of the algorithm

A recurrence for the running time of a divide-and-conquer algoritﬁm is
based on th.e three steps of the basic paradigm. As before, we let T'(n)
be the running time on a problem of size n. If the problem size is small
enough, sa'y n < ¢ for some constant ¢, the straightforward solution takes
f:onstant time, which we write as ©(1). Suppose we divide the problem
into a subproblems, each of which is 1/b the size of the original. If we
take p(n) time to divide the problem into subproblems and C(n) -time to
combine the solutions to the subproblems into the solution to the original
problem, we get the recurrence -

4 . .
"rl“hci expression [x] denotes the least integer greater than or equal to x, and | x| denotes the
greatest integer less than or equal to x. These notations are defined in Chapter 2.
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Figure 1.3 The operation of merge sort on the array 4 = (5,2, 4, 6', 1,3,2,6). The
lengths of the sorted sequences being merged increase as the algorithm progresses
from bottom to top.

o(1 ifn<e,
T(n) = {aé"()n/b) + D(n)+ C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the. num-
ber of elements is not even, our recurrence-based analysis is simplified if
we assume that the original problem size is a power of two. Each divide
step then yields two subsequences of size exactly n/2. In Chapter 4, we
shall see that this assumption does not affect the order of growth of the

solution to the recurrence.

We reason as follows to set up the recurrence for T(n), the worst-case
running time of merge sort on # numbers. Merge sort on just one element
takes constant time. When we have n > 1 elements, we break down the

running time as follows.

Divide: The divide step just computes the middle of the subarray, which
takes constant time. Thus, D(n) = ©(1).

Conguer: We recursively solve two subproblems, each of size n /2, which
contributes 27°(#/2) to the running time.

Combine: We have already noted that the MERGE procedure on an n-
element subarray takes time ©(n), so C(n) = e(n).
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When we add the functions D(r) and C(n) for the merge sort analysis,
we are adding a function that is ©(n) and a function that is ©(1). This
sum is a linear function of #, that is, ©(n). Adding it to the 27 (n/2) term
from the “conquer” step gives the recurrence for the worst-case running
time 7'(n) of merge sort:

_ [e(l) ifn=1,
T(n) = {2T(n/2) +Om) ifn>1.
In Chapter 4, we shall show that T'(n) is ©(nlgn), where lgn stands for
log, n. For large enough inputs, merge sort, with its ©(rn lg #) running time,
outperforms insertion sort, whose running time is ©(n?), in the worst case.

Exercises

1.3-1

Using Figure 1.3 as a model, illustrate the operation of merge sort on the
array A = (3,41,52,26,38,57,9,49).

1.3-2
Write pseudocode for MERGE(A, p, g, ).

1.3-3

Use mathematical induction to show that the solution of the recurrence
2 ifn=2,

T(n) = {2T(n/2) tn ifn=2%k>1

is T(n)=nlgn.

1.3-4

Insertion sort can be expresséd as a recursive procedure as follows. In
order to sort A[1..n], we recursively sort A[l..n— 1] and then insert A[n]
into the sorted array A[1..n — 1]. Write a recurrence for the running time
of this recursive version of insertion sort.

1.3-5

Referring back to the searching problem (see Exercise 1.1-3), observe that
if the sequence A is sorted, we can check the midpoint of the sequence
against v and eliminate half of the sequence from further consideration.
Binary search is an algorithm that repeats this procedure, halving the size
of the remaining portion of the sequence each time. Write pseudocode,
either iterative or recursive, for binary search. Argue that the worst-case
running time of binary search is ©(lgn).

1.3-6

Observe that the while loop of lines 5-7 of the INSERTION-SORT procedure
in Section 1.1 uses a linear search to scan (backward) through the sorted
subarray A[l1..j — 1]. Can we use a binary search (see Exercise 1.3-5)
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instead to improve the overall worst-case running time of insertion sort to
O(nlgn)?

1.3-7 %

Describe a ©(n1g n)-time algorithm that, given a set S of n real numbers
and another real number X, determines whether or not there exist two
elements in .S whose sum is exactly x.

I

1.4 Summary

A good algorithm is like a sharp knife—it does exactly what it is supposed
to do with a minimum amount of applied effort. Using the wrong algo-
rithm to solve a problem is like trying to cut a steak with a screwdriver:
you may eventually get a digestible result, but you will expend consider-
ably more effort than necessary, and the result is unlikely to be aesthetically
pleasing.

Algorithms devised to solve the same problem often differ dramatically
in their efficiency. These differences can be much more significant than
the difference between a personal computer and a supercomputer. As an
example, let us pit a supercomputer running insertion sort against a small
personal computer running merge sort. They each must sort an array of
one million numbers. Suppose the supercomputer executes 100 million
instructions per second, while the personal computer executes only one
million instructions per second. To make the difference even more dra-
matic, suppose that the world’s craftiest programmer codes insertion sort
in machine language for the supercomputer, and the resulting code re-
quires 2n? supercomputer instructions to sort # numbers. Merge sort, on
the other hand, is programmed for the personal computer by an average
programmer using a high-level language with an inefficient compiler, with
the resulting code taking 50nign personal computer instructions. To sort
a million numbers, the supercomputer takes

X 612 3 .
2 (.10 ) 1r'15truct10ns = 20,000 seconds = 5.56 hours ,
108 instructions/second

while the personal computer takes

. 6 6 * .
50 10°1g 10° instructions 40 seconds ~ 16.67 minutes .
106 instructions/second

By using an algorithm whose running time has a lower order of growth,
even with a poor compiler, the personal computer runs 20 times faster
than the supercomputer!

This example shows that algorithms, like computer hardware, are a tech-
nology. Total system performance depends on choosing efficient algorithms
as much as on choosing fast hardware. Just as rapid advances are being

Problems for Chapter 1 17

madeuin other computer technologies, they are being made in algorithms
as well.

Exercises

1.4-1

Suppose we are comparing implementations of insertion sort and merge
sorzt on the sa}me machine. For inputs of size n, insertion sort runs in
8n? steps, while merge sort runs in 64nlgn steps. For which values of n

does insertion sort bgat merge sort? How might one rewrite the merge sort
pseudocode to make it even faster on small inputs?

1.4-2

What is the smallest value of # such that an algorithm whose running time

is 100n2 runs faster than an algori ing time i
gorithm whose running time is 2"
same machine? ’ on the

Problems

1-1 Comparison of running times

For eacl} function f(n) and time ¢ in the following table, determine the
1arge§t size n of a problem that can be solved in time ¢, assuming that the
algorithm to solve the problem takes f(#) microseconds.

1 .1 1 1 1 1 1
second | minute | hour day month | year | century

Ign

1-2 Insertion sort on small arrays in merge sort

Althqugh merge sort runs in ©(nlgn) worst-case time and insertion sort
runs in ©(n?) worst-case time, the constant factors in insertion sort make it
faster for small n. Thus, it makes sense to use insertion sort within merge
sort when subl?roblems become sufficiently small. Consider a modification
to merge sort in which n/k sublists of length k are sorted using insertion
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sort and then merged using the standard merging mechanism, where k is
a value to be determined.

a. Show that the n/k sublists, each of length k, can be sorted by insertion
sort in ©(nk) worst-case time.

b. Show that the sublists can be merged in ©(nlg(n/k)) worst-case time.

¢. Given that the modified algorithm runs in O(nk + nlg(n/k)) worst-case
time, what is the largest asymptotic (©-notation) value of k as a function
of n for which the modified algorithm has the same asymptotic running
time as standard merge sort? '

d. How should k be chosen in practice?

1-3 Inversions
Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[lj);
then the pair (i, j) is called an inversion of A.

a. List the five inversions of the array (2,3,8,6,1).

b. What array with elements from the set {1,2,...,1n} has the most inver-
sions? How many does it have?

¢c. What is the relationship between the running time of insertion sort and
the number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any
permutation on n elements in ©(nlgn) worst-case time. (Hint: Modify
merge sort.)

-

Chapter notes

There are many excellent texts on the general topic of algorithms, including
those by Aho, Hopcroft, and Ullman [4, 5], Baase [14], Brassard and Brat-
ley [33], Horowitz and Sahni [105], Knuth [121, 122, 123], Manber [142],
Mehlhorn [144, 145, 146], Purdom and Brown [164], Reingold, Nievergelt,
and Deo [167], Sedgewick [175], and Wilf [201]. Some of the more prac-
tical aspects of algorithm design are discussed by Bentley [24, 25] and
Gonnet [90].

In 1968, Knuth published the first of three volumes with the general
title The Art of Computer Programming [121, 122, 123]. The first vol-
ume ushered in the modern study of computer algorithms with a focus on
the analysis of running time, and the full series remains an engaging and
worthwhile reference for many of the topics presented here. According to
Knuth, the word “algorithm” is derived from the name “al-Khowdarizmi,”
a ninth-century Persian mathematician.
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lAh.o, Hopcroft, and Ullman [4] advocated the asymptotic analysis of
algo.rltl(llmil as a means of comparing relative performance. They also pop-
ularized the use of recurrence relations to describ i i

. e the runn

recursive algorithms. ine times of

. Ih(nuth [1.23] provifies an encyclopedic treatment of many sorting algo-
rithms, H}s comparison of sorting algorithms (page 381) includes exact
step-cc:unt.mg agalyses, like the one we performed here for insertion sort
Klnutp s discussion of insertion sort encompasses several variations of the
a gorlthm. The m(?st important of these is Shell’s sort, introduced by D. L
Shell, which uses insertion sort on periodic subsequences of the input to
produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical
F:ollator ca}pable of merging two decks of punched cards in a single pass was
invented in 1938. J. von Neumann, one of the pioneers of computer sci-

§nc1e9, 4zg)parently wrote a program for merge sort on the EDVAC computer
in .
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Introduction

The analysis of algorithms often requires us to draw upon a body of math-
ematical tools. Some of these tools are as simple as high-school algebra,
but others, such as solving recurrences, may be new to you. This part of
the book is a compendium of the methods and tools we shall use to analyze
algorithms. It is organized primarily for reference, with a tutorial flavor
to some of the topics.

We suggest that you not try to digest all of this mathematics at once.
Skim the chapters in this part to see what material they contain. You can
then proceed directly to the chapters that focus on algorithms. As you
read those chapters, though, refer back to this part whenever you need
a better understanding of the tools used in the mathematical analyses.
At some point, however, you will want to study each of these chapters
in its entirety, so that you have a firm foundation in the mathematical
techniques.

Chapter 2 precisely defines several asymptotic notations, an example of
which is the ©-notation that you met in Chapter 1. The rest of Chapter 2

_is primarily a presentation of mathematical notation. Its purpose is more

to ensure that your use of notation matches that in this book than to teach
you new mathematical concepts.

Chapter 3 offers methods for evaluating and bounding summations,
which occur frequently in the analysis of algorithms. Many of the for-
mulas in this chapter can be found in any calculus text, but you will find
it convenient to have these methods compiled in one place.

Methods for solving recurrences, which we used to analyze merge sort in
Chapter 1 and which we shall see many times again, are given in Chapter 4.
One powerful technique is the “master method,” which can be used to
solve recurrences that arise from divide-and-conquer algorithms. Much
of Chapter 4 is devoted to proving the correctness of the master method,
though this proof may be skipped without harm.
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s basic definitions and notations for set's, relatlogs,
d trees. This chapter also gives some basic properties
This material is essential for an under-
fely be skipped if you have already had a

Chapter 5 contain
functions, graphs, an :
of these mathematical objects.
standing of this text but may sa
discrete mathematics course. o . '

Chapter 6 begins with elementary principles of counting: permutations,

combinations, and the like. The remainder of the chapter contains defini-

tions and properties of basic probability. Most of the algorithms in this

book require no probability for their analysis, and thus you can easily omit

the latter sections of the chapter on a first reading, even without skimming

ilisti lysis that you want
hen you encounter a probabilistic ana '
e eretand b Y ¢ 6 well organized for reference

to understand better, you will find Chapte
purposes.

R

o

Growth of Functions

The order of growth of the running time of an algorithm, defined in Chap-
ter 1, gives a simple characterization of the algorithm’s efficiency and also
allows us to compare the relative performance of alternative algorithms.
Once the input size n becomes large enough, merge so-t, with its ©(nlgn)
worst-case running time, beats insertion sort, whose worst-case running
time is ©(n2). Although we can sometimes determine the exact running
time of an algorithm, as we did for insertion sort in Chapter 1, the ex-
tra precision is not usually worth the effort of computing it. For large
enough inputs, the multiplicative constants and lower-order terms of an
exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of
growth of the running time relevant, we are studying the asymptotic ef-
ficiency of algorithms. That is, we are concerned with how the running
time of an algorithm increases with the size of the input in the limit, as the
size of the input increases without bound. Usually, an algorithm that is
asymptotically more efficient will be the best choice for all but very small
inputs.

This chapter gives several standard methods for simplifying the asymp-
totic analysis of algorithms. The next section begins by defining several
types of “asymptotic notation,” of which we have already seen an example
in ©-notation. Several notational conventions used throughout this book
are then presented, and finally we review the behavior of functions that
commonly arise in the analysis of algorithms.

2.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an al-
gorithm are defined in terms of functions whose domains are the set of
natural numbers N = {0, 1,2,...}. Such notations are convenient for de-
scribing the worst-case running-time function 7'(n), which is usually de-
fined only on integer input sizes. It is sometimes convenient, however,
to abuse asymptotic notation in a variety of ways. For example, the no-
tation is easily extended to the domain of real numbers or, alternatively,
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restricted to a subset of the natural numbers. It is important, pqwever, tdo
understand the precise meaning of the notation sO that when it 1s abuse (i
it is not misused. This section defines the basic asymptotic notations an
also introduces some common abuses.

©-notation

In Chapter 1, we found that the worst-case running time of insertion ‘sort
is T(n) = ©(n?). Let us define what this notation means. For a given
function g(n), we denote by ©(g(n)) the set of functions

i iti h that
= n) : there exist positive constants ¢, €2, and ng suc
&e(m) = {1 0<cign) < f(n)< c,g(n) forall n > no} -

A function f(#n) belongs to the set ©(g(n)) if there exist positive consta?ts
¢; and ¢; such that it can be «gandwiched” between cl'g(r‘z‘) and ¢ g(n), o’r’
sufficiently large n. Although ©(g(n)) is a set, we ‘\‘vrlte f(n)= (f({%)-
to indicate that f(n) is a member of ©(g(n)), or “f(n) € O(g(n)). “his
abuse of equality to denote set membershiphmay (?t ﬁr:t ips)pear confusing,
ee later in this section that it has advantages.
bu;i:zrih;.l i (Sa) gives an intuitive picture of fupctions f(n) and g(n), f\jvherc;
f(n) = ©(g(n)). For all values of n to the right of np, the value of f(n11
lies at or above c¢ig(n) and at or below czg(r%). 'In other words, for \;1[
n > ng, the function f(n) is equal tohg(lr,l) tod“;}thl}l(?l )constant factor. We
is an asymptotically tight bound 10T .
Sa}’ll“:l};atlegfirrlli)tion of g)(;(n)) requires that every memb(?r of ©(g(n)) bg
asymptotically nonnegative, that is, that f (n') be nonnggatwe whenever n 1s_
sufficiently large. Consequently, the functlon‘ g(n) itself must behasy}np
totically nonnegative, or else the set ©(g(n)) is gmpjty. We shau t 1i:re ore
assume that every function used within ©-notation 18 gsymptojuca y fr‘llon(-1
negative. This assumption holds for the other asymptotic notations define
i i well. .
mltlll1 ISC;IL?)?Z? f,s we introduced an informal notion' of Q-notatlon (’Llhat
amounted to throwing away lower-order tem}s anfl 1gnorlqg ‘the ‘le.a 1r;g
coefficient of the highest-order term. Let us briefly justify 2thls intuition by
using the formal definition to show that in?-3n= ©(n?). To do so, we
must determine positive constants ¢}, ¢z, and Ao such that

cn? < %nz —3n < cn?
for all n > ng. Dividing by n? yields
1 3
<.
¢ < 5 n s €2
The right-hand inequality can be made to hold for any value ofn>1

by choosing ¢z > 1 /2. Likewise, the left-hand inequality can be made‘ to
hold for any value of n > 7 by choosing ¢1 < 1/14. Thus, by choosing

Ee

3
|
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Figure 2.1 Graphic examples of the ©, O, and Q notations. In each part, the
value of ny shown is the minimum possible value; any greater value would also
work. (a) ©-notation bounds a function to within constant factors. We write
f(n) = ©(g(n)) if there exist positive constants 7o, ¢;, and ¢, such that to the
right of n, the value of f(n) always lies between c;g(n) and c;g(n) inclusive.
(b) O-notation gives an upper bound for a function to within a constant factor.
We write f(n) = O(g(n)) if there are positive constants o and ¢ such that to the
right of s, the value of f(n) always lies on or below cg(n). (€) Q-notation gives a
lower bound for a function to within a constant factor. We write f(n) = Q(g(n))

if there are positive constants 7, and ¢ such that to the right of no, the value of
f(n) always lies on or above cg(n).

¢, = 1/14, ¢; = 1/2, and ny = 7, we can verify that 1n? — 3n = O(n?).
Certainly, other choices for the constants exist, but the important thing is
that some choice exists. Note that these constants depend on the function
%nz — 3n; a different function belonging to ©(n?) would usually require
different constants.

We can also use the formal definition to verify that 6n3 # ©(n?). Sup-
pose for the purpose of contradiction that ¢, and ng exist such that 6n <
c,n? for all n > ng. But then n < ¢/6, which cannot possibly hold for
arbitrarily large #, since ¢ is constant.

Intuitively, the lower-order terms of an asymptotically positive function
can be ignored in determining asymptotically tight bounds because they
are insignificant for large n. A tiny fraction of the highest-order term is
enough to dominate the lower-order terms. Thus, setting ¢; to a value that
is slightly smaller than the coefficient of the highest-order term and setting
¢, to a value that is slightly larger permits the inequalities in the definition
of ©-notation to be satisfied. The coefficient of the highest-order term can
likewise be ignored, since it only changes ¢; and c; by a constant factor
equal to the coefficient.

As an example, consider any quadratic function f(n) = an? + bn +c,
where a, b, and c are constants and a > 0. Throwing away the lower-
order terms and ignoring the constant yields f(n) = ©(n?). Formally, to
show the same thing, we take the constants ¢, = a/4, c; = 7a/4, and



26

Chapter 2 Growth of Functions

no = 2 - max((|b] /a), v/ (Ic| /a)). The reader may verify that 0 < ¢jn? <
an?+bn+c< cyn? for all n > no. In general, for any polynomial p(n) =
Z(ii:o a;n', where the a; are constants and a; > 0, we have p(n) = e(n?)
(see Problem 2-1).

Since any constant is a degree-0 polynomial, we can express any constant
function as ©(n°), or ©(1). This latter notation is a minor abuse, however,
because it is not clear what variable is tending to infinity.! We shall often
use the notation ©(1) to mean either a constant or a constant function

with respect to some variable.

O-notation

The ©-notation asymptotically bounds a function from above and below.
When we have only an asymptotic upper bound, we use O-notation. For a
given function g(n), we denote by O(g(n)) the set of functions

O(g(n)) = {f(n): there exist positive constants ¢ and ng such that
0< f(n)<cg(n) foralln 2 no} -

We use O-notation to give an upper bound on a function, to within a
constant factor. Figure 2.1(b) shows the intuition behind O-notation. For
all values 7 to the right of no, the value of the function f (n) is on or below
g(n).

To indicate that a function f(n) is a member of O(g(n)), we write f(n) =
O(g(n)). Note that f(n) = ©(g(n)) implies f(n) = O(g(n)), since ©-
notation is a stronger notion than O-notation. Written set-theoretically,
we have ©(g(n)) C O(g(n))- Thus, our proof that any quadratic function
an’+bn+c, where a > 0, isin ©(n?) also shows that any quadratic function
isin O(n?). What may be more surprising is that any linear function an+b
is in O(n?), which is easily verified by takingc =a + |b| and np = 1.

Some readers who have seen O-notation before may find it strange that
we should write, for example, n = O(n?). In the literature, O-notation is
sometimes used informally to describe asymptotically tight bounds, that
is, what we have defined using ©-notation. In this book, however, when we
write f(n) = O(g(n)), we are merely claiming that some constant multiple
of g(n) is an asymptotic upper bound on f(n), with no claim about how
tight an upper bound it is. Distinguishing asymptotic upper bounds from
asymptotically tight bounds has now become standard in the algorithms
literature.

Using O-notation, we can often describe the running time of an algo-
rithm merely by inspecting the algorithm’s overall structure. For example,

1'The real problem is that our ordinary notation for functions does not distinguish functions
from values. In A-calculus, the parameters to a function are clearly specified: the function n?
could be written as An.n?, or even Ar.r?. Adopting a more rigorous notation, however, would
complicate algebraic manipulations, and so we choose to tolerate the abuse.
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the dc?ubly nested loop structure of the insertion sort algorithm from Chap-
t;r 1 immediately yields an O(n?) upper bound on the worst-case running
t1me; tl}e cost of the inner loop is bounded from above by O(1) (constant)
the indices i and j are both at most », and the inner loop is executed a;
mo§t once for each of the n? pairs of values for i and j.

Since O-notation describes an upper bound, when we use it to bound
the worst‘-case. running time of an algorithm, by implication we also bound
the 12'unn1ng time of the algorithm on arbitrary inputs as well. Thus, the
O(n ) box}nd on worst-case running time of insertion sort also applies ’Eo its
running ’gme on every input. The ©(n?) bound on the worst-case running
tlme‘of 1@sertion sort, however, does not imply a ©(n?) bound on the
running time of insertion sort on every input. For example, we saw in
Chapter 1 that when the input is already sorted, insertion ;ort r i
O(n) time. , .

Teghnically, it is an abuse to say that the running time of insertion
sort 1s Q(nz), since for a given n, the actual running time depends on
the pgr’ucular input of size n. That is, the running time is not really a
functlon of n. What we mean when we say “the running time is O(n?)”
is tt‘lat the worst-case running time (which is a function of n) is O(n?), or
equivalently, no matter what particular input of size n is chosen for e’ach
value of n, the running time on that set of inputs is O(n?).

Q-notation

Just as O-nota.tion provides an asymptotic upper bound on a function, Q-
notation provides an asymptotic lower bound. For a given function g(n)
we denote by Q(g(n)) the set of functions ’

Q(g(n)) = {f(n) : there exist positive constants ¢ and ng such that
0<cg(n) < f(n) for all n > no} .

The intuition behind Q-notation is shown in Figure 2.1(c). For all values
n to the right of ng, the value of f(n) is on or abovedg(n).

. From the definitions of the asymptotic notations we have seen thus far.
it is easy to prove the following important theorem (see Exercise 2.1-5). ’

Theorem 2.1
For any two functions f(n) and , -0 . X _
O(g(n)) and f(n) = Q(g(n)). g(n), f(n) = ©(g(n)) if and only if f(n) -

As an example of the application of this theorem, our proof that an® +
gm +.c = ©(n?) for any constants a, b, and ¢, where a > 0, immediatel
1mp11es that an? + bn+c = Q(n?) and an®> + bn + ¢ = 0(’n2) In prac}:
tice, rather than using Theorem 2.1 to obtain asymptotic upper 'and lower
bounds from asymptotically tight bounds, as we did for this example, we
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usually use it to prove asymptotically tight bounds from asymptotic upper
and lower bounds.

Since Q-notation describes a lower bound, when we use it to bound the
best-case running time of an algorithm, by implication we also bound the
running time of the algorithm on arbitrary inputs as well. For example,
the best-case running time of insertion sort is Q(n), which implies that the
running time of insertion sort is Q(n).

The running time of insertion sort therefore falls between Q(n) and
O(n?), since it falls anywhere between a linear function of » and a qua-
dratic function of n. Moreover, these bounds are asymptotically as tight
as possible: for instance, the running time of insertion sort is not Q(n?),
since insertion sort runs in ©(n) time when the input is already sorted. It
is not contradictory, however, to say that the worst-case running time of
insertion sort is Q(nz), since there exists an input that causes the algorithm
to take Q(n?) time. When we say that the running time (no modifier) of
an algorithm is ©(g(n)), we mean that no matter what particular input of
size n is chosen for each value of n, the running time on that set of inputs
is at least a constant times g(n), for sufficiently large n.

Asymptotic notation in equations

We have already seen how asymptotic notation can be used within math-
ematical formulas. For example, in introducing O-notation, we wrote
«p = O(n?).” We might also write 2+ 3n+ 1 = 2n*+6(n). How
do we interpret such formulas?

When the asymptotic notation stands alone on the right-hand side of
an equation, as in n = O(n?), we have already defined the equal sign to
mean set membership: 7 € O(n?). In general, however, when asymptotic
notation appears in a formula, we interpret it as standing for some anony-
mous function that we do not care to name. For example, the formula
on? + 3n + 1 = 2n? + ©(n) means that 21?4+ 3n+ 1 =2n%+ f(n), where
f(n) is some function in the set ©(n). In this case, f(n)y=3n+1, which
indeed is in ©(n).

Using asymptotic notation in this manner can help eliminate inessential
detail and clutter in an equation. For example, in Chapter 1 we expressed
the worst-case running time of merge sort as the recurrence

T(n) = 2T(n/2) +O(n) .

If we are interested only in the asymptotic behavior of T'(n), there is no
point in specifying all the lower-order terms exactly; they are all understood
to be included in the anonymous function denoted by the term ©(n).

The number of anonymous functions in an expression is understood to
be equal to the number of times the asymptotic notation appears. For
example, in the expression
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S o),
=1

th;;e is only ha single anonymous function (a function of 7). This expression
is thus not the same as O(1) + O(2) + - -- + O(n), whi

! , ch ?
a clean interpretation. " teh docsntreally have

s n

2n? +O(n) = O(n?) .

We interpret such equations using the following rule: No matter how the
anonymous functions are chosen on the left of the equal sign, there is a
way to choose the anonymous functions on the right of the e(}ual sign to
make the‘equation valid. Thus, the meaning of our example is thaﬁ for
an)2/ function f(n) € ©(n), there is some function g(n) € ©(n?) such that
2n + f(n) = g(n) for all n. In other words, the right-hand side of an
equation provides coarser level of detail than the left-hand side

A number of such relationships can be chained together, as iI;

2n+3n+1 = 2n2+6(n)
= O(n?).

We cz}n interpret each equation separately by the rule above. The first
equation says that there is some function f(n) € ©(n) such .that 2n? +
3n +‘1 = 2n% + f(n) for all n. The second equation says that for an

funct%on g(n) € O(n) (such as the f(n) just mentioned), there is somJe}
fupcpon h(n) € ©(n?) such that 2n? + g(n) = h(n) for ail n. Note that
thlS. 19terpretation implies that 2n? + 3n + 1 = ©(n?), which 'is what t;‘

chaining of equations intuitively gives us. ’ e

o-notation

The asymptotic 'upper bound provided by O-notation may or may not be
a;ymptotlcally tight. The bound 2n? = O(n?) is asymptotically tight, but
the bound 2n = O(n?) is not. We use o-notation to denote an upper b(,)und

that is not asymptotically ti W
ght. We formally defin “little-~
£ 1) as the set y e o(g(n)) (“little-oh of

o(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
no > 0 such that 0 < f(n) < cg(n) for all n > ny} .

For example, 2n = o(n?), but 2n% # o(n?).
The definitions of O-notation and o i imi
' ; ‘ -notation are similar. The main
S;f::rence is that in f(n) = O(g(n)), the bound 0 < f(n) < cg(n) holds for
. 1de ionstant ¢ >0, butin f(n) = o(g(n)), the bound 0 < f(n) < cg(n)
olds for all cpn§tar}ts ¢ > 0. Intuitively, in the o-notation, the function
f(n) becomes insignificant relative to g(n) as n approaches infinity; that is
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lim A 0. (2.1)
n—co g(n) 3}
Some authors use this limit as a definition of the o-notation; the definition

in this book also restricts the anonymous functions to be asymptotically
nonnegative.

w-notation

By analogy, w-notation is to Q-notation as o-notation is to O-no'tation.' We
use w-notation to denote a lower bound that is not asymptotically tight.

One way to define it is by
f(n) € w(g(n)) if and only if g(n) € o(f(n)) .
Formally, however, we define w(g(n)) (“little-omega of g of n”) as the set
: iti 0, there exists a constant
w(gn)) = {f(n): for any positive constant ¢ > 0,
(500 =1 ng > 0 such that 0 < cg(n) < f(n) for all n > no} .

For example, n?/2 = w(n), but n2/2 # o(n?). The relation f(n) =
w(g(n)) implies that

lim ___f(n) =00
n—oo g(1n) .
if the limit exists. That is, f{n) becomes arbitrarily large relative to gn)

as n approaches infinity.

Comparison of functions

Many of the relational properties of real numbers apply to asymptotic
comparisons as well. For the following, assume that f(n) and g(n) are

asymptotically positive.

Transitivity:
f(n) = ©(g(n)) and g(n) = O(h(n) imply f(n) = ©(h(n)) ,
f(n) = O(g(n)) and g(n) = O(h(n) imply f(n) = O(h(n)),
f(n) = Q(g(n)) and g(n) = Qh(n) imply f(n) = Q(h(n)),
f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
f(n) = w(g(n) and g(n) = w(h(n)) imply f(n) = o(h(n)) .
Reflexivity:
f(n) = ©(f(n),

fn)y = O(f(n),
fin) = QUf(n).
Symmetry:
f(n) =06(g(n)) if and only if g(n)= e(f(n)) .
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Transpose symmetry:
f(n) = O(g(n)) if and only if g(n) = Q(f(n)),
f(n) = o(g(n)) ifandonlyif g(n) = w(f(n)).
Because these properties hold for asymptotic notations, one can draw

an analogy between the asymptotic comparison of two functions f and g
and the comparison of two real numbers a and b:

f(n)=0(g(n)) =~ a<b,
f(n)=Qgn) = axb,
f(n)=0(g(n)) = a=b,
f(n)y=o(g(n)) = a<b,
f(n)=w(gn) = a>b.

One property of real numbers, however, does not carry over to asymp-
totic notation:

Trichotomy: For any two real numbers a and b, exactly one of the following
must hold: a < b,a=b, ora > b.

Although any two real numbers can be compared, not all functions are
asymptotically comparable. That is, for two functions f(n) and g(n), it
may be the case that neither f(n) = O(g(n)) nor f(n) = Q(g(n)) holds.
For example, the functions # and n!*+"* cannot be compared using asymp-
totic notation, since the value of the exponent in nl+sin? ggeillates between
0 and 2, taking on all values in between.

Exercises

2.1-1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the
basic definition of ©-notation, prove that max(f(n), g(n)) = ©(f(n) +
g(n)).

2.1-2

Show that for any real constants a and b, where b > 0,

(n+a)® =6(n’). (2.2)
2.1-3

Explain why the statement, “The running time of algorithm A is at least
O(n?),” is content-free.

2.1-4
Is 21 = 0(2")? Is 2" = 0(2")?

2.1-5
Prove Theorem 2.1.
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2.1-6 ' . . .
Prove that the running time of an algorithm 1s ©(g(n)) if and only if

i i ime is
its worst-case running time is O(g{(n)) and 1ts best-case running time
Q(g(n)).

2.1-7 ’
Prove that 0(g(n)) N w(g(n)) is the empty set.

2.1-8
We can extend our notation to the case of two parameters 2 and m that

can go to infinity independently at different rates‘. For a given function
g(n,m), we denote by O(g(n, m)) the set of functions

: i iti tants ¢, no, and mg
,m)) = {f(n,m): there exist positive cons ,
Ogtn.m) e such that 0 < f(n,m) < cg(n,m)
for all n > ng and m 2> mo} .

Give corresponding definitions for Q(g(n, m)) and ©(g(#, m)).

Iy

2.2 Standard notations and common functions

This section reviews some standard mathematical fun.ctions and Eotanonsf
and explores the relationships among them. It also illustrates the use O

the asymptotic notations.

Monotonicity

A function f(n) is monotonically increasi'ng if m g.n imphes f (m>) ? ’{)(HI)A;
Similarly, it is monotonically decreasing ifm< n 1mphes f(m) _f(n) E.md
function f(n) is strictly increasing if m < n implies f(m) <

strictly decreasing if m <n implies f(m) > f(n).

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to1
x by |x] (read “the floor of x”) and the least integer greater than or equa

to x by [x] (read “the ceiling of x”). For all real x,
x—1 < |x] £x < x] < x+1.

For any integer 4,

n/21+n/2)=n, N
and for any integer # and integers a # 0 and b2 0,

2.3
[[n/a) /b] = [n/ab] (2.3)
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and
LLn/a]/b] = |n/ab] . (2.4)

The floor and ceiling functions are monotonically increasing.
Polynomials

Given a positive integer d, a polynomial in n of degree d is a function p(n)
of the form

d
p(n) =Y _an',
i=0
where the constants ag, a,, . . ., d; are the coefficients of the polynomial and

a; # 0. A polynomial is asymptotically positive if and only if a, > 0. For
an asymptotically positive polynomial p(n) of degree d, we have p(n) =
©(n?). For any real constant a > 0, the function n¢ is monotonically
increasing, and for any real constant a < 0, the function n® is monoton-
ically decreasing. We say that a function f(n) is polynomially bounded if
f(n) = nOD, which is equivalent to saying that f(n) = O(n¥) for some
constant k (see Exercise 2.2-2).

Exponentials

For all real a # 0, m, and n, we have the following identities:

ao = 1 s
1 a,
a! = l/a,
(am)n - gmn
H
(@ = (am)"”,
ama" = am+" .

For all n and a > 1, the function a” is monotonically increasing in n.
When convenient, we shall assume 0° = 1.

The rates of growth of polynomials and exponentials can be related by
the following fact. For all real constants a and b such that a > 1,

. n
M =0 (2.5)

from which we can conclude that

nt

=o(a") .

Thus, any positive exponential function’ grows faster than any polynomial.
g y

Using e to denote 2.71828 ... ., the base of the natural logarithm function,
we have for all real x,
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2

3 o i
X X Zx 2.6)
ex=1+x+—_+'_‘3!+'=ol!7 (
j=

2!

where “!” denotes the factorial function defined later in this section. For
all real x, we have the inequality

e*>1+x, @7)

where equality holds only when x = 0. When |x| < 1, we have the approx-
imation

2.8
l4x<e <l+x+x". (2.8)
When x — 0, the approximation of e* by 1 + x is quite good:
F=1+x+06(x.

(In this equation, the asymptotic notation is used to describe the limiting
behavior as x — 0 rather than as x — oo.) We have for all x,

lim (1+%)" =e*.

n—oo

Logarithms

We shall use the following notations:

lgn = logn (binary logarithm) ,
Inn = log.n (natural logarithm) ,
gkn = (gn) (exponentiation) ,
1glgn = lg(lg n) (composition) .

An important notational convention we shall adopt is that logarithm fun‘cl-1
tions will apply only to the next term in the formula, so that lgr? + k wi
mean (lgn)+k and not lg(n+ k). Forn > 0 and b > 1, the function log, 7
is strictly increasing.

For all reala > 0,5 >0, ¢ > 0, and #,

a = b7,
log,(ab) = log a + 108 b,
log,, a® = nlogya,
_ log.a
logya = log. b’
log,(1/a) = —logya,
1
log,a = Tog, b’
aosn = nlogs a4 (2.9)

Since changing the base of a logarithm from one constant to another
only changes the value of the logarithm by 2 constant factor, we shall
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often use the notation “lgn” when we don’t care about constant factors,
such as in O-notation. Computer scientists find 2 to be the most natural
base for logarithms because so many algorithms and data structures involve
splitting a problem into two parts.
There is a simple series expansion for In(1 + x) when |x| < 1:
xr x3 x* X3
ln(1+x)—x—7+—3———4—+—5——--- .

We also have the following inequalities for x > —1:
X
— < < .
T % < In(l+x) < x, (2.10)

where equality holds only for x = 0.

We say that a function f(n) is polylogarithmically bounded if f(n) =
lgo(” n. We can relate the growth of polynomials and polylogarithms by
substituting lgn for n and 2¢ for a in equation (2.5), yielding

From this limit, we can conclude that
1g° n = o(n%)

for any constant a > 0. Thus, any positive polynomial function grows
faster than any polylogarithmic function.

Factorials

The notation n! (read “n factorial”) is defined for integers n > 0 as
ol = 1 ifn=0,
T la-(n=-1! ifn>0.
Thus, n!=1-2-3..-n.
A weak upper bound on the factorial function is n! < n”, since each of
the n terms in the factorial product is at most n. Stirling’s approximation,

n!=\/m(g)"(1+®(%>) , (2.11)

where ¢ is the base of the natural logarithm, gives us a tighter upper bound,
and a lower bound as well. Using Stirling’s approximation, one can prove
nl = o),
n = w2,
lg(n!) = O(nlgn).

The following bounds also hold for all n:
n\" (Y 120)
Y << (Y-
Virn (e) _n._\/@n%(e) A (2.12)

. £, :;1‘:1‘/‘.\
Uizl

s

7
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The iterated logarithm function

We use the notation 1g" n (read “log star of n”) to denote the iterated
logarithm, which is defined as follows. Let the function lg(’) n be defined

recursively for ponnegative integers i as
_ no ifi=0, ‘
1g9n= 1g(lg~"n) if i>0and g "n>0,
undefined  if i > 0 and g~ n<0or lg(’"l) n is undefined .

Be sure to distinguish lg(i) n (the logarithm ‘function applied i times in
succession, starting with argument n) from 1g' n (the logarithm of n raised
to the ith power). The iterated logarithm function is defined as

lg*nzmin{iZO:lg(i)ngl} .

The iterated logarithm is a very slowly growing function:

g2 = 1,

g4 = 2,
1g°16 = 3,

1g" 65536 = 4,
17 (2655%) = 5.

er of atoms in the observable universe is estimated to be

Since the numb
about 1089, which is much less than 26553, we rarely encounter a value of

n such that 1g" n > 5.

Fibonacci numbers

The Fibonacci numbers are defined by the following recurrence:

Fp = 0,
Fo=1, (2.13)
F, = Fi_+ Fi» fori>2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding
the sequence

0,1,1,2, 3,5 8, 13, 21, 34, 55, ... -

Fibonacci numbers are related to the golden ratio ¢ and to its conjugate $,
which are given by the following formulas:

1+ V5 (2.14)

2

— 1.61803...,
~ 1-V5
¢ = 2

— —.61803....
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Specifically, we have

Fi — ¢i —&
V5o (2.15)

;v;l‘ich Acian\/tle proved by induction (Exercise 2.2-7). Since |$| < 1, we
e |¢'|/V5 < 1/V/5 < 1/2, so that the ith Fibonacci number F; is e’qual

/\/_ .

Exercises

2.2-1
f(l)lz\;ve ttt;;t fllfnj; in) al}d( g)(n) are monotonically increasing functions, then
ions f(n)+ g(n) and f(g(n)), and if f(n) and are |
., . . . > g n are

addition nonnegative, then f(n)- g(n) is monotonically increasiflg? "
2.2-2
Use the definition of O-notation

‘ - to show that T(n) = n? i i
there exists a constant k£ > 0 such that T(n) = 0((’3‘) " ifand only it

2.2-3
Prove equation (2.9).

2.2-4
Prove that lg(n!) = ©(nlgn) and that n! = o(n").

2.2-5 *
Is the function [lgn]! .

! polynomially b 9 .
polynomially bounded? y bounded? Is the function [lglgn]!

2.2-6 %
Which is asymptotically larger: lg(lg” n) or Ig”*(lg n)?

2.2-7

};‘1'"0:ve l?y_ip\lduction that the.: ith Fibonacci number satisfies the equalit
= (¢! — ¢')/V/5, where ¢ is the golden ratio and ¢ is its conjugate. ’

2.2-8

Prove that for i > 0, the (i + 2)nd Fibonacci number satisfies Fi,2 > ¢'.
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—'__*__#___#-___—#_-___—____—____________##__#_______#___#___#___g_______#_______ﬂ____._g lg(g*n) 2¥°7  (V2)er  pn? n! (lgn)!
(3" n3 ig8n  lgnl) 22 pl/ien
Problems
Inlnn Ig"n n.-2"  nplelen  Inn 1
2-1 Asymptotic behavior of polynomials 2en (gnyer  en 4B (n+ 1) Ign
Let nt
, lg*(lgn) 2V2en n 2 nlgn 2%
p(n) = Z ain' , b. Give an example of a single nonnegative function f(n) such that for all
i=0 4 vol 2l in #. and let k be a constant. functions g;(n) in part (a), f(n) is neither O(g;(n)) nor Q(gi(n)).
a, > 0, be a degree-d polynomi M ) :
\[Njhere dd finitions of the asymptotic notations to prove thé following ] ) )
se the definl 2-4 Asymptotic notation properties
properties.

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove

. If k > d, then p(n) = o(n*). each of the following conjectures.

a. f(n) = O(g(n)) implies g(n) = O(f(n)).
b 1f k < d, then p(n) = Q). f(n) = O(g(n)) implies g(n) = O(f(n))
b. f(n)+ g(n) =O(min(f(n), g(n))).
Lk = d. then p(n) = O(15). f(n) + g(n) = O(min(f(n), g(n)
_ o(nk) ‘ c. f(n) = O(g(n)) implies lg(f(n)) = O(lg(g(n))), where lg(g(n)) > 0 and
d. If k > d, then p(n) = 0(1"). f(n) > 1 for all sufficiently large .
k
e. If k < d, then p(n) = @(n%). d. f(n) = O(g(n)) implies 2" = O (28M),
- i mptotic growths e. f(n)=0((f(n)?)
. fi‘ I:elag)vre ::zh Ir;air of expressions (4, B) in the table below, whether L
Indicel: hat k > 1, € > 0, and ¢ > 1 are , £ f(n) = O(g(n)) implies g(n) = Q(/(n)).
Ais O, 0, Q, w, or © of B. Assume tha > 1, b eoes” o
constants. Your answer should be in the form of the table with “yes” o g f(n)=0(f(n/2)).
“no” written in each box.
B o | Q|| © | b f(n) + o f(n)) = O(f(n).

2-5 Variations on O and Q

Some authors define Q in a slightly different way than we do; let’s use Q
(read “omega infinity”) for this alternative definition. We say that f(n) =

3(g(n)) if there exists a positive constant ¢ such that f(n) > cg(n) > 0
for infinitely many integers n.

X
nk c"

‘ o l\
1g°n n \
‘

a.
b.
e \/—ﬁ nsin n
d 27 27 |
e. ntm  me” \

£ lgnh) lg(n") \ \

N .

a. Show that for any two functions f(n) and g(n) that are asymptotically

nonnegative, either f(n) = O(g(n)) or f(n) = 6(g(n)) or both, whereas
this is not true if we use Q in place of Q.

- dering by asymptotic growth rates '

121. 3Rar?1: the fglloywin"; functions by order of'gro.wth', that is, find an frg(nge)-
ment g, 82,---> 830 of the functions s?tlsfylng g1 =) &2 = > fﬁai
ey 820 = QU&0)- Partition your 1ist. into equlvglence class@es suc
f(n) and g(n) are in the same class if and only if f(n) = O(g(n)).

b. Describe the potential advantages and disadvantages of using G instead
of Q to characterize the running times of programs.

Some authors also define O in a slightly different manner; let’s use O’ for
the alternative definition. We say that f(n) = O'(g(n)) if and only if
|/ (m)| = O(g(n)).

¢. What happens to each direction of the “if and only if” in Theorem 2.1
under this new definition?
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Some authors define O (read “soft-oh”) to mean O with logarithmic factors
ignored:

O(g(n)) ={f(n): there exist positive constants ¢, k, and ng such that
0< f(n) < cg(n)lgk(n) for all n > ng} .

d. Define Q and ® in a similar manner. Prove the corresponding analog
to Theorem 2.1.

2-6 [Iterated functions
The iteration operator “*” used in the lg* function can be applied to mono-
tonically increasing functions over the reals. For a function f satisfying
f(n) < n, we define the function f (i) recursively for nonnegative integers
i by

0o D)) i i>0,
f”(")‘{n ifi=0.

For a given constant ¢ € R, we define the iterated function f by

fr(n)=min{i>0: fO(n) <c}
which need not be well-defined in all cases. In other words, the quantity
fx(n) is the number of iterated applications of the function f required to
reduce its argument down 1o ¢ Or less.

For each of the following functions f(rn) and constants ¢, give as tight a
bound as possible on f(n).

f(n) fem
Ign

c
a 1
b n-1 0
c n/2 1
d n/2 2
e N{ 2
f 1
g 2
h. 2

vn

1/3

n

|
|
|
|
|

.

nflgn

ey

Chapter notes

Knuth [121] traces the origin of the O-notation to a number-theory text
by P. Bachmann in 1892. The o-notation was invented by E. Landau in
1909 for his discussion of the distribution of prime numbers. The Q and
© notations were advocated by Knuth [124] to correct the popular, but
technically sloppy, practice in the literature of using O-notation for both

Notes for Chapter 2
41

u
W[})gi; ;:Ld G;C;lvgirt})oupds. Many people continue to use the O-notation
-notation is more technically precise. Further di i
" - . Further discussion of the
11;tory and development of asymptotic notations can be found in Knuth
[121, 124] and Brassard and Bratley {33].
th(l)\Logtheilllleauth'ors czlef;ne the asymptotic notations in the same way, al
various definitions agree in most com i i e of
the alternative definitions i o o oy
encompass functions that are not as i
i . ymptoticall
nogrtlﬁgatlve, as !ong as their absolute values are appropriately b(I))unded ’
n erdpropernes qf elementary mathematical functions can be found .in
A y goo2 math(?matlcal reference, such as Abramowitz and Stegun [1] or
ever [27], or in a calculus book, such as Apostol [12] or Thomas and

Finney [192]. Knuth [121] i
' . contains a wealth of material i
ematics as used in computer science. on diserete math-
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