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Research conducted over the past fifteen years has amply demonstrated the advantages of 

algorithms that make random choices in the course of their execution. This paper presents a wide 

variety of examples intended to illustrate the range of applications of randomized algorithms, and 

the general principles and approaches that are of greatest use in their construction. The examples 

are drawn from many areas, including number theory, algebra, graph theory, pattern matching, 

selection, sorting, searching, computational geometry, combinatorial enumeration, and parallel 

and distributed computation. 

1. Foreword 

This paper is derived from a series of three lectures on randomized algorithms 

presented by the author at a conference on combinatorial mathematics and 

algorithms held at George Washington University in May, 1989. The purpose of the 

paper is to convey, through carefully selected examples, an understanding of the 

nature of randomized algorithms, the range of their applications and the principles 

underlying their construction. It is not our goal to be encyclopedic, and thus the 

paper should not be regarded as a comprehensive survey of the subject. 

This paper would not have come into existence without the magnificent efforts 

of Professor Rodica Simion, the organizer of the conference at George Washington 

University. Working from the tape-recorded lectures, she created a splendid 

transcript that served as the first draft of the paper. Were it not for her own reluc- 

tance she would be listed as my coauthor. 
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2. Introduction 

A randomized algorithm is one that receives, in addition to its input data, a 

stream of random bits that it can use for the purpose of making random choices. 

Even for a fixed input, different runs of a randomized algorithm may give different 

results; thus it is inevitable that a description of the properties of a randomized 

algorithm will involve probabilistic statements. For example, even when the input 

is fixed, the execution time of a randomized algorithm is a random variable. 

Isolated examples of randomized algorithms can be traced back to the very early 

days of computer science, but the central importance of the concept became general- 

ly recognized only about fifteen years ago. Among the key early influences were the 

randomized primality test developed by Solovay and Strassen [45] and a paper by 

Rabin [37] which drew attention to the general concept of a randomized algorithm 

and gave several nice applications to number theory and computational geometry. 

Also noteworthy is an early paper by Gill [19] which laid the foundations for the 

extension of abstract computational complexity theory to include randomized 

algorithms. 

By now it is recognized that, in a wide range of applications, randomization is 

an extremely important tool for the construction of algorithms. There are two prin- 

cipal types of advantages that randomized algorithms often have. First, often the 

execution time or space requirement of a randomized algorithm is smaller than that 

of the best deterministic algorithm that we know of for the same problem. But even 

more strikingly, if we look at the various randomized algorithms that have been in- 

vented, we find that invariably they are extremely simple to understand and to im- 

plement; often, the introduction of randomization suffices to convert a simple and 

naive deterministic algorithm with bad worst-case behavior into a randomized 

algorithm that performs well with high probability on every possible input. 

In the course of these lectures we will touch on a wide range of areas of applica- 

tion for randomized algorithms. We will discuss randomized algorithms in number 

theory and algebra, randomized algorithms for pattern matching, sorting and 

searching, randomized algorithms in computational geometry, graph theory and 

data structure maintenance, and randomized techniques in combinatorial enumera- 

tion and distributed computing. This means that there will be many kinds of 

mathematics involved, but we will omit hard proofs and we will only draw on 

elementary mathematical methods. 

The unifying theme of these lectures will be the fact that a handful of basic prin- 

ciples underly the construction of randomized algorithms, in spite of the wide varie- 

ty of their application. These principles will become more meaningful as we progress 

through the lectures, but let us mention some of them as a preview. 

Abundance of witnesses. Randomized algorithms often involve deciding whether 

the input data to a problem possesses a certain property; for example, whether an 

integer can be factored. Often, it is possible to establish the property by finding a 

certain object called a witness. While it may be hard to find a witness deter- 
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ministically, it is often possible to show that witnesses are quite abundant in a cer- 

tain probability space, and thus one can search efficiently for a witness by 

repeatedly sampling from the probability space. If the property holds, then a witness 

is very likely to be found within a few trials; thus, the failure of the algorithm to 

find a witness in a long series of trials gives strong circumstantial evidence, but not 

absolute proof, that the input does not have the required property. 

Foiling the adversary. A game-theoretic view is often useful in understanding the 

advantages of a randomized algorithm. One can think of the computational com- 

plexity of a problem as the value of certain zero-sum two-person game in which one 

of the players is choosing the algorithm and the other player, often called the adver- 
sary, is choosing the input data to foil the algorithm. The adversary’s payoff is the 

running time of the algorithm on the input data chosen by the adversary. A ran- 

domized algorithm can be viewed as a probability distribution over deterministic 

algorithms, and thus as a mixed strategy for the player choosing the algorithm. 

Playing a mixed strategy creates uncertainty as to what the algorithm will actually 

do on a given input, and thus makes it difficult for the adversary to choose an input 

that will create difficulties for the algorithm. 

Fingerprinting. This is a technique for representing a large data object by a short 

“fingerprint” computed for it. Under certain conditions, the fact that two objects 

have the same fingerprint is strong evidence that they are in fact identical. We will 

see applications of fingerprinting to pattern matching problems. 

Checking identities. It is often possible to check whether an algebraic expression 

is identically equal to zero by plugging in random values for the variables, and 

checking whether the expression evaluates to zero. If a nonzero value ever occurs, 

then the expression is not an identity; if the value zero occurs repeatedly, then one 

has strong evidence that the expression is identically zero. 

Random sampling, ordering and partitioning. Randomized algorithms for tasks 

such as sorting and selection gather information about the distribution of their input 

data by drawing random samples. For certain problems it is useful to randomize the 

order in which the input data is considered; in such cases, one can show that, for 

every fixed array of input data, almost all orderings of the data lead to acceptable 

performance, even though some orderings may cause the algorithm to fail. In a 

similar way, randomized divide-and-conquer algorithms are often based on random 

partitioning of the input. 

Rapidly mixing Markov chains. Several randomized algorithms for the approx- 

imate solution of combinatorial enumeration problems are based on the ability to 

sample randomly from a large, structured set of combinatorial objects. The sam- 

pling process is based on a Markov chain whose states correspond to these com- 

binatorial objects. A crucial issue in such cases is to show that the Markov chain 

converges rapidly to its stationary distribution. 

Load balancing. In the context of distributed computation, randomization is 

often used to even out the assignment of computational tasks to the various process- 

ing units. 
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Symmetry breaking. In distributed computation, it is often necessary for a collec- 

tion of computational processes to collectively make an arbitrary but consistent 

choice from a set of essentially indistinguishable possibilities. In such cases, ran- 

domization is useful for breaking symmetry. 

In addition to describing and illustrating how the above ideas are used in the con- 

struction of randomized algorithms, we shall briefly discuss some general concepts 

related to randomized algorithms. Among these are the following. 

Randomized complexity classes. Within computational complexity theory there 

has been an effort to study the class of problems solvable in polynomial time by ran- 

domized algorithms. Because of the probabilistic nature of the performance 

guarantees for randomized algorithms, several quite different reasonable definitions 

of this class have been proposed. 

Interactive proofs. In an interactive proof, a prover demonstrates that a theorem 

is true by performing some task that would be impossible to perform if the theorem 

were false. Usually this task consists of giving the correct answers to a sequence of 

questions drawn at random from some set. 

Randomness as a computational resource. In practice, randomized algorithms do 

not have access to an unlimited supply of independent, unbiased random bits. 

Physical sources of randomness tend to produce correlated sequences of bits. There 

is a large body of current research concerned with using imperfect sources of ran- 

domness and with stretching short random bit strings into much longer strings 

which, although not random, cannot easily be distinguished from truly random 

strings by computational tests. 

Eliminating randomization. One way to obtain a deterministic algorithm is to 

first construct a randomized algorithm and then eliminate the randomization. We 

shall briefly touch on methods for accomplishing this. 

3. Number theory 

During the 197Os, a number of powerful randomized algorithms were discovered 

in the field of number theory. These algorithms were an important early stimulus 

to the study of randomized algorithms. In order to describe the properties of some 

of these algorithms, we will need a little elementary number theory. 

Let p be a prime and let Z; = { 1,2, . . . ,p - l}. Zz is a cyclic group under the 

operation of multiplication modulo p. There are low-degree polynomial-time 

algorithms to compute the inverse a -’ of an element a E Zp* (this can be done by the 

Euclidean algorithm) and powers a’ of an element in Z,* (by successive squaring). 

An element ae.Z,* is said to be a quadratic residue if it is a perfect square in Z,*, 

i.e., if there exists z E Zz such that .z2 = a. The Legendre symbol (a/p) of an element 

a E Z: is an indicator of whether the element is a perfect square. It is defined as 1 

if a is a quadratic residue and -1 otherwise. The Legendre symbol has the 

multiplicative property (a,a2/p) = (al/p)(a2/p). It also follows from the fact that Z,* 
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is a cyclic group that (a/p) = a (p-1)‘2. In particular, this shows that the Legendre 
symbol is easy to compute. 

3.1. Square roots module p 

One of the earliest randomized algorithms in number theory was for finding a 
square root of aEZ:, given that a is a quadratic residue. There is an explicit for- 
mula for the square root when p = 3 (mod 4). The following algorithm for the 
general case has been attributed to D.H. Lehmer. It also emerges as a special case 
of Berlekamp’s algorithm [7] for factoring polynomials with coefficients in Z,,. 

Suppose we know that a is a quadratic residue in Z: and we want to find its 
square roots. In other words, we want to factor the polynomial x2-a over Z;. It 
is sufficient, instead of factoring x2 -a, to obtain a factorization of the polynomial 
(x-c)2-a, for some c~Zp*, since this amounts to simply shifting the roots of 
x2 - a. Thus, suppose (x - c)~ - a = (x- r)(x - s). Then rs = c2 - a, and (r/p)(s/p) = 

((c2-a)/~). If, upon choosing c and computing ((c2-a)/p), it turns out that 
((c2 - a)/p) is not 1, then we know from the multiplicative property of the Legendre 
symbol that exactly one of r and s is a quadratic residue. On the other hand, the 
quadratic residues in ZT are the roots of the polynomial x(~-~)‘~- 1; hence, the 
greatest common divisor of (x- c)~ - a and x@-~)‘~ - 1 is a first-degree polynomial 
whose root is that root of (x - c)~ - a which is a quadratic residue. So we choose c 
randomly, check whether c2 -a is a quadratic residue and, if it is not, then easy 
computations will yield a root of (x - c)~ - a from which we can obtain fi. These 
ideas lead to the following algorithm. 

Algorithm 3.1 (Finding square roots in Z,*>. 
l Choose c at random from Zp*; 
l if ((c2- a)/p) = -1 then compute gcd(x (p-l)‘2 - 1, (x- c)~ - a); the result is 

ox - /? and a zero of (x- c)~ - a is r = a-‘/l; return fi = &(c + r). 

The fundamental question is: how abundant are those elements c such that c2 - a 

is a quadratic nonresidue? It can be proven that more than half the elements of Z,* 
have this property: 

Theorem 3.2. Given a quadratic residue a EUz, if c is chosen at random from Z; 

then, with probability larger than +, we have ((c’- a)/p) = -1. 

This is an example of a randomized algorithm that depends on the abundance of 
witnesses. It is a Las Vegas algorithm; i.e., it provides a solution with probability 
larger than 3 and never gives an incorrect solution. Often we have to settle for a 
weaker result: a Monte Carlo algorithm. The concept of a Monte Carlo algorithm 
applies in situations where the algorithm makes a decision or a classification, and 
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its output is either yes or no. A Monte Carlo algorithm is a randomized algorithm 

such that, if the answer is yes, then it confirms it with probability larger than 5, but 

if the answer is no, then it simply remains silent. Thus, on an input for which the 

answer is no, the algorithm will never give a definitive result; however, its failure 

to give a yes answer in a long series of trials gives strong circumstantial evidence that 

the correct answer is no. We will shortly see a Monte Carlo algorithm for testing 

whether an integer is composite. The class of decision problems for which 

polynomial-time Monte Carlo algorithms exist is called RP. The class for which 

polynomial-time Las Vegas algorithms exist is called ZPP. It is easy to see that 

ZPP = RP fl co-RP, where a language is in co-RP if its complement is in RP. 

We should point out that there are other kinds of randomized algorithms that 

make errors: they give an incorrect answer with no indication that the answer is 

wrong. Such an algorithm is said to be a bounded-error randomized algorithm if 

there exists a constant E>O such that, on every input, the probability with which 

it gives a correct answer is at least 3 + E. A bounded-error randomized algorithm is 

quite useful because if, say, E = .l, then, every time the algorithm is run the answer 

provided is correct with probability at least .6, and this probability can be amplified 

at will by running the algorithm repeatedly and taking the most frequent answer. 

On the other hand, an unbounded-error randomized algorithm is one that gives the 

correct answer with probability which is greater than 3, but is not bounded away 

from 3 by any fixed amount. In this case there is no statistical method of using 

repeated trials in order to get high confidence in the answer. This makes unbounded- 

error algorithms rather impractical, but they have been the object of some nice 

theoretical studies. 

3.2. Monte Carlo test for compositeness 

The 1970s produced two famous polynomial-time Monte Carlo algorithms for 

testing whether a given integer is composite [45,37]. We shall present the one due 

to Solovay and Strassen. Given a positive integer n, not necessarily prime, let 

Z,*={alaE{1,2,..., n-l} and gcd(a,n) = l}. This set forms a group under 

multiplication modulo n, and we have the Jacobi symbol, which generalizes the 

Legendre symbol: if n is prime, then the Jacobi and Legendre symbols agree and 

we have (a/n) = a(“-‘)“; generally, if p1,p2, . . . ,pk are primes and n =pIp2 “‘pk, 
then the Jacobi symbol is (a/n)=(a/p,)(a/p2) ... (a/pk). It turns out, somewhat 

surprisingly, that the Jacobi symbol (a/n) is easy to compute. Using Gauss’ law of 

quadratic reciprocity, one obtains a fast algorithm which resembles the Euclidean 

algorithm and does not require that the prime factorization of n be known. 

Solovay and Strassen discovered a way to use the Jacobi symbol to obtain an ex- 

ceedingly simple Monte Carlo test for compositeness. 

Algorithm 3.3 (Test if a positive integer n is composite). 

l Choose a at random from {1,2,...,n-1); 
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if gcd(a, n) # 1 then return composite 
else if (a/n) # a(“- ‘V2 (mod n) then report composite. 
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Let us say that a is a witness to the compositeness of n if, when the algorithm 

receives n as input and chooses a at random, it determines that n is composite. Then 

the effectiveness of the algorithm depends on the abundance of witnesses. If n is 

composite, then it is easy to see that the elements a E Z,* that are not witnesses, i.e., 

those that satisfy (a/n) = a(n-1)‘2 (mod n), form a subgroup of Z:. Moreover, it can 

be shown that the nonwitnesses form a proper subgroup. Since the order of a 

subgroup divides the order of the group, the order of a proper subgroup is at most 

half the order of the group. Thus, 

Theorem 3.4. If n is composite, then witnesses to its compositeness are abundant. 

This Monte Carlo algorithm never gives an unambiguous report that n is prime. 

Rather, it keeps looking for witnesses to the compositeness of n, and if n is prime 

the algorithm remains perpetually silent. On the other hand, if n is composite, then 

the chance that the algorithm would fail to report compositeness within 100 trials 

is less than 2-l”. Perhaps in some contexts such a failure to report compositeness 

is a sufficiently convincing argument that n is prime, even if it does not provide a 

mathematically rigorous proof of the primality of n. So we see again that Monte 

Carlo algorithms provide a proof in one direction, but only circumstantial evidence 

in the other direction. 

Within the past few years, the work of Adleman and Huang [2] and others has 

led to a fast Las Vegas algorithm for primality testing. This algorithm uses the 

Monte Carlo algorithm for compositeness, together with a rather complicated 

Monte Carlo test of primality. The Las Vegas algorithm alternates between running 

these two Monte Carlo algorithms. Whether n is prime or composite, one of the two 

Monte Carlo algorithms will (with probability 1) eventually produce a witness, thus 

determining the status of n; and the expected time to find a witness is polynomial 

bounded. 

4. Randomized equality testing 

4.1. Testing polynomial identities 

A very important idea which is often attributed to Schwartz [40] or R. Zippel, 

but has been rediscovered many times, is the use of randomized algorithms for 

testing polynomial identities. 

Here is an example: the formula for computing a Vandermonde determinant. Let 

9x2, ***, x, be variables, and let A4 be the n x n matrix whose (i -j)th element is 
x(-l. Then the following is an identity: I 

det(M) - n (Xi-Xj)=O. 
i>j 
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If, instead of proving this identity, we just wanted to verify it for the case n = 6, we 
might do the following: repeatedly plug in numerical values for the variables, and 
evaluate the left-hand side. If we ever obtained a nonzero value, we would be able 
to conclude that the identity is false. If we kept getting the value zero, we would 
not be able to conclude that the identity is correct, but it seems that our confidence 
in its correctness would increase with each evaluation. 

In the context of randomized computation, there is some foundation for this 
viewpoint, namely 

Theorem 4.1. Letf(xl,x2 ,..., x,,) be a multivariate polynomial of degree d. If f is 

not identically zero and if values al,a2,..., a,, are drawn independently from the 

uniform distribution over (0, f 1, +2, . . . , kd}, then Pr [f (al, a2, . . . , a,) = 01 <i-- 

This theorem, which can be proved easily by induction on the number of 
variables, says that, if the polynomial is not identically zero, then, if we keep choos- 
ing independent random samples from a suitably large finite domain and substitute 
them for the variables, there is a very tiny chance that the polynomial will repeatedly 
take on the value zero. Thus we have an efficient Monte Carlo algorithm for testing 
the property that a polynomial is not identically zero. One of the uses of this tech- 
nique occurs in graph theory in connection with the problem of determining whether 
a given graph has a perfect matching. 

4.2. Testing whether a graph has a perfect matching 

A perfect matching in a graph is a set of edges which covers each vertex exactly 
once. Figure 1 shows two graphs, one which has a perfect matching and another 
which does not have a perfect matching. 

The following theorem due to Tutte [46] gives a necessary and sufficient deter- 
minantal condition for a graph to have a perfect matching. 

\\___ /-.-I 
Fig. 1. 
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Theorem 4.2. Let G be a graph with vertex set { 1,2,, . . , n>, and let A = (ati) be the 
skew-symmetric n x n matrix defined as follows in terms of the indeterminates 
xij : a0 = 0 if i and j are not adjacent; ati =xii if i and j are adjacent and i < j; 
aij = -Xji if i and j are adjacent and i > j. Then G has a perfect matching if and only 
if det(A) $0. 

In view of our discussion of testing polynomial identities, Tutte’s theorem is the 

basis of a randomized algorithm for testing whether a graph has a perfect matching. 

This was first observed by Lovasz. 

Algorithm 4.3 (Testing for the existence of a perfect matching in a graph on n 

vertices). 

l Form a matrix C by substituting xij = cij in Tutte’s symbolic matrix, where the 

cti are independent random variables uniformly distributed over the range 

{O, +l, &2, . . . , fn}; 
l evaluate det(C); 

l if det(C)#O then report ‘perfect matching exists”. 

Since a numerical determinant can be computed in time O(n3) by Gaussian 

elimination, this algorithm is a polynomial-time Monte Carlo algorithm for testing 

whether a perfect matching exists. This is of somewhat academic interest, since 

Micah and Vazirani [32,47] have given a deterministic algorithm (much more com- 

plicated than the randomized algorithm given here) which tests for the existence of 

a perfect matching in time O(mfi), where m is the number of edges in the graph; 

the Micali-Vazirani algorithm is based on the augmenting path methods initiated 

by Berge [6] and Edmonds [18]. However, the above algorithm can also be im- 

plemented in parallel within the same resource bounds required for the evaluation 

of determinants: time O(log* n) using O@Z~.~) processors. This is noteworthy, since 

no deterministic parallel algorithm is known which tests for the existence of a 

perfect matching in polylog parallel time using a polynomial-bounded number of 

processors. 

Instead of merely testing whether a perfect matching exists, suppose we would like 

to construct a perfect matching in parallel very rapidly. Is there some single ran- 

domized computation that will simultaneously identify all the edges in a perfect 

matching? This question was first resolved in [28]. We shall present the remarkably 

elegant solution to this problem by Mulmuley, Vazirani and Vazirani [36]. 

4.3. Fast para(lel algorithm to find a perfect matching 

The algorithm is based on the following probabilistic lemma which at first sight 

seems very surprising because of its great generality. 

Lemma 4.4 (Isolation lemma). Let Sl,S2, . . ..S. be distinct subsets of 
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S={l,2,..., N}. Let wl, w,, . . . , wN be independent random weights assigned to the 
elements of S, drawn from the uniform distribution over (0, +- 1, t-2, . . . , &N}. By the 
weight of a subset of S we mean the sum of the weights of its elements. Then, with 
probability larger than 3, there is a unique subset of minimum weight. 

Proof. Suppose that two subsets, Si and Sj, achieve the minimum weight. Then 
there is some element XE S that lies in one of these sets but not in the other. Thus, 
the minimum weight among the subsets containing x is equal to the minimum weight 
among the subsets not containing x. But the probability of this event is at most 
1/(2N+ l), since for each assignment of weights to the elements of S- (x] there is 
only one choice of a weight for x that will equate the minimum weight for the 
subsets not containing x with the minimum weight for the subsets containing x. 
Since x may be chosen in N ways, the probability of having two or more minimum- 
weight sets is at most N/(2N+ 1) < 3. 0 

In order to apply this result to matchings, let G be a graph on the vertex set 

{1,2,..., n} with edge set S. We assign weights to the edges of G, the weights being 
independent random variables drawn from the uniform distribution over 
{0,+1,+2 ,..., _ +[n2/2] + l}. For the subsets Si we take the sets of edges which are 
perfect matchings. Then the Isolation lemma guarantees that, with probability 
larger than 4, there is a unique perfect matching of minimum weight. 

The observation of Mulmuley, Vazirani and Vazirani is that, when a unique 
perfect matching M of minimum weight exists, a simple calculation based on deter- 
minants will identify in parallel all the edges of M. This is done as follows: 

l Let Wij be the weight of edge i-j; 
l from the Tutte matrix, form the numerical matrix B by letting x,=2”‘0; 
l in parallel, for all edges {i,j}, perform the following test to determine whether 

{i,j} lies in M: Compute 

tjj= 
det (Bij)2”‘” 

22w 

where Bti is the &minor of the matrix B. The edge {i,j} lies in M if and only if tij 

is an odd integer. 
l Check that the edges determined to lie in M form a perfect matching. This 

check is necessary because of the possibility that the perfect matching of minimum 
weight is not unique. 

The key observation is that each nonzero term in the expansion of det(B) cor- 
responds to a perfect matching, and is equal to -t22w, where w is the weight of the 
corresponding matching. It follows that, if Wis the weight of the unique minimum- 
weight perfect matching, then 22w is the highest power of 2 that divides det(B). 
Thus the value of W can be determined easy from that of det(B). 

The determinant of B and all the minors B, can be calculated in parallel in 
O(log2 n) time using a polynomial-bounded number of processors. Thus we have a 
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fast and reasonably efficient randomized parallel algorithm for constructing a 

perfect matching in a graph. 

5. Testing equality of long strings by fingerprinting 

We turn now to an application with a number-theoretic flavor which was first 

discussed by the Latvian mathematician Freivalds, who was one of the first to in- 

vestigate the power of randomized algorithms. Suppose that two parties, Alice (A) 

and Bob (B) can communicate over a reliable but very costly communication chan- 

nel. Suppose Alice has a very long string of bits X, Bob has a very long string of 

bits y, and they want to determine whether x =y. For example, we can think of Alice 

and Bob as having two versions of a manuscript and wanting to determine whether 

they are equal. An obvious way for them to test whether x=y would be for Alice 

to send x across the channel to Bob; Bob could then compare x with y and let Alice 

know whether they are equal. But this brute-force solution would be extremely ex- 

pensive, in view of the cost of using the channel. Another possibility would be for 

Alice to derive from x a much shorter string that could serve as a “fingerprint” of 

x; this short string might be obtained by applying some standard hashing or check 

sum technique. Alice could then send this fingerprint to Bob, who could determine 

whether the fingerprints of x and y were equal. If the fingerprints were unequal, 

then Bob would notify Alice that x#y. If the fingerprints were equal, then Bob 

would assume that x=y and so notify Alice. This method requires the transmission 

of much less data across the channel, but permits the possibility of a &z/se match, 
in which x and y have the same fingerprint even though they are not the same string. 

In order to apply this idea Alice and Bob must agree on the fingerprinting func- 

tion to be used. For example, they could choose a prime p and then use reduction 

modulo p as the fingerprinting function: 

H,(x) = H(x) (mod P) 

where H(x) is the integer represented by the bit string x. If p is not too large, then 

the fingerprint H,(x) can be transmitted as a short string of bits. This leads to the 

following algorithm. 

Algorithm 5.1 (Testing equality of long strings by fingerprinting-prime p chosen 

in advance). 

l A sends H,(x); 

l B checks if H,(x) =H,(y); 

l B confirms that x=y if H,(x) =H,(y) and that x#y otherwise. 

The weakness of this method is that, if p is held fixed, then there are certain pairs 

of strings x and y on which the method will always fail, no matter how many times 

it is repeated. A more advantageous method, which avoids such bad pairs x and y, 
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is to determine the prime p by randomization every time the equality of two strings 

is to be checked, rather than to agree on p in advance. This leads to the following 

algorithm, which is an improvement over the previous one. 

Algorithm 5.2 (Testing equality of long strings by fingerprinting-randomized 

choice of the prime p). 
l A draws p at random from the set of primes less than a certain value M; 

l A sends p and H,(x); 
l B checks whether H,(x) = H,(y) and confirms the equality or inequality of the 

strings x and y. 

The advantage of this second method is that if the prime p is chosen from a 

suitably large range, then for any strings x and y the probability that the algorithm 

will fail is extremely small; moreover, the probability of failure can be reduced even 

further by repeating the algorithm with several independent random choices of p. 
To make this precise, let n(N) be the number of primes less than N, This function 

is a familiar and well-studied object in number theory and it is a fact that rc(N) is 

asymptotic to ZWln N. It is also known that, if A <2”, then, except when n is very 

small, the number of primes that divide A is less than n(n). Now let us compute the 

probability that the second algorithm will fail for two n-bit strings x and y. Failure 

can occur only in the case of a false match: i.e., xfy but H,(x) = H,(y). This is 

only possible if p divides IH(x) -H(y)/, an integer which is less than 2”. Hence, 

Pr [failurel = I {P 1 P < M, P is prime, P divides IH(x) -H(Y) I > I < ~(4 
m,f) - 7c(M). 

In practice this second algorithm works very well. For example, if the strings x and 

y are 100,000 bits long and if Alice uses a fingerprint of at most 32 bits long, then, 

by substituting n = 100,000, M= 232 into the above formula, we find that, using 

Algorithm 5.2, the probability of a false match is less than 10m4. 

5.1. Pattern matching in strings 

This is a classical problem in computer science to which fingerprinting can be ap- 

plied. The problem is to determine whether or not a certain short pattern occurs in 

a long text. Any modern text processing system must provide the capability of per- 

forming such searches. 

The most naive method for solving this problem is simply to move the short pat- 

tern across the entire text, and in every position make a brute-force comparison, 

character by character, between the symbols in the pattern and the corresponding 

symbols in the text. This is a quadratic method: its worst-case running time is pro- 

portional to nm, where n is the length of the pattern and m is the length of the text. 
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More complicated approaches using pointer structures lead to deterministic methods 
that run in time O(n+m). 

Here we will present a simple and efficient randomized method due to Karp and 
Rabin [27]. The method follows the brute-force approach of sliding the pattern 
X=x,x,...x, across the text Y=y,yZ... yn, but instead of comparing the pattern 
with each block Y(i) = yi yi+ 1.. . yi+n _1 of the text, we will compare the fingerprint 
H,(X) of the pattern with the fingerprints Hp(Y(i)) of the blocks of text. These 
fingerprints are fortunately easy to compute. The key observation is that when we 
shift from one block of text to the next, the fingerprint of the new block Y(i + 1) 
can be computed easily from the fingerprint of Y(i) using the following formula: 

H,(Y(i+l))=H,(Y(i))+H,(Y(i))-2”y,+yi+.(modp). 

Algorithm 5.3 (Pattern matching in strings). 
l Choose p at random from (q ) 1 sqrm2n, q prime}; 
l MATCH t FALSE; it 1; 

l while MATCH=FALSE and lsism-n+l do 

if H,(X) = H,( Y (i)) 
then MATCH t TRUE 
else i+i+l; compute Y(i+l). 

Since the updating of the fingerprint requires a fixed number of arithmetic opera- 
tions modulo p, the algorithm is essentially a real-time algorithm. 

Now we need to analyze the frequency with which this algorithm will fail. A false 
match will be reported only if for some i we have X# Y(i) but H,(X) =H,(Y(i)). 
This is only possible if p is a divisor of ntiIx, rciJ) IH(X) -H(Y(i))I. This prod- 
uct does not exceed 2m”, and hence the number of primes that divide it does not ex- 
ceed n(mn). Consequently, the probability of a false match does not exceed 
n(mn)/n(m2n)=2/m. By way of a numerical example, if we have a text of length 
m = 4000 bits and a pattern of length n = 250 bits, we have m2n = 4 x lo9 ~2~‘. We 
can use a 32-bit fingerprint and the probability of a false match will be about 10p3. 
So this randomized algorithm is an extremely practical method for performing pat- 
tern matching in a simple manner with a very small probability of error. 

6. Selection, sorting and searching 

We turn now to randomized algorithms in the core computer science areas of 
selection, searching and sorting. Many of the basic ideas of randomization were 
discovered and applied quite early in the context of these problems. We will see ex- 
amples of how random sampling or random partitioning can be used effectively in 
algorithm design. Let us start with the classical problem of finding the median of 
a set of integers. 
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6.1. Finding the median 

Let 2 be the nth smallest element of the set X= {x1,x2, . . ..x2”_i}. There are fair- 

ly complicated linear-time algorithms for finding 2. We will describe a simple 

randomized algorithm due to Floyd reported in [30]. It is based on the idea of taking 

a random sample of elements of X in order to determine an interval within which 

the median is likely to lie, and then discarding the elements that lie outside that inter- 

val, thereby reducing the size of the problem. 

Using our coin-tossing capability, we pick from X a small random sample X (a 

good choice for the sample size is 2n2’3). Within this sample we pick two elements 

a and b which are not too far from the median of the sample, but far enough away 

that, with high probability, the median of the overall set will lie between a and 6. 

Specifically, among the 2n 2’3 elements that were chosen randomly, we pick the 

elements whose ranks in the ordering are n2’3 -n1’3 In n and n2’3 + n”3 In n. A 

straightforward argument shows that, with high probability, the proportion of 

elements from the overall set that lie in the interval [a, b] will be quite similar to the 

proportion of elements in the random sample 8 which lie in this interval; specifical- 

ly, it will be true with high probability that IXtl [a, b] I< 2n2’3 In n. Secondly, it will 

be true with high probability that 2’~ [a, b]. Now the algorithm is quite obvious. 

Algorithm 6.1 (Median-finding). 

l Draw from X a random sample of size 2n2’3; 

l sort X to determine the interval [a, 61; 
l compare each element of X with a, and then, if necessary, with 6, to determine 

whether the element lies in [a,b]; in this process, keep count of the number of 

elements less than a, in order to determine the rank of P in the set Xtl [a, b] (for 

simplicity we neglect the extremely unlikely possibility that _jZ does not lie in [a, b]); 
l determine 2 by sorting the set Xn [a, b]. 

The execution time of the algorithm is dominated by the step in which each ele- 

ment is compared with a and possibly b. The expected number of elements com- 

pared with b is n/2+ o(n), and thus the expected execution time of the entire 

algorithm is 3n/2 + o(n). This extremely simple randomized algorithm compares 

favorably with the deterministic median-finding algorithms, thus demonstrating in 

a simple context the power of random sampling. 

6.2. Quicksort with random partitioning 

Random partitioning is an important tool for the construction of randomized 

divide-and-conquer algorithms. The classic algorithm that uses random partitioning 

is a variant of the famous sorting algorithm Quicksort. Quicksort with random par- 

titioning can be described very simply. To sort a set of elements X= {x1,x2, . . . ,x,,} 

the algorithm proceeds as follows: 
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Algorithm 6.2 (Quicksort with random partitioning). 
l Draw an element x* at random from the set X; call x* the splitter; 
l compare each element with x*, thus partitioning the remaining elements into 

two sets: SMALL=(xeX(x<x*) and LARGE={xEX(~*<X); 
l recursively, sort the sets SMALL and LARGE. 

Of course, what is desired is a splitter that will divide X into two sets of approx- 
imately equal size. Although the random choice of a splitter does not guarantee such 
a division, it can be shown, using a straightforward analysis based on a recurrence 
relation, that the expected execution time of Quicksort when all splitters are chosen 
at random is 2n Inn + O(n). This performance compares fairly well with the stan- 
dard information-theoretic lower bound n log, n for the number of comparisons 
needed to sort n items. 

6.3. Binary search trees 

Similar ideas can be applied to problems concerning data structures. One of the 
most basic data structures is a dictionary. A dictionary is intended to include items 
from a linearly ordered set such as the integers or the words over an alphabet, and 
to support the operations of accessing, inserting or deleting an element. Often fur- 
ther operations are supported, such as joining two dictionaries together, splitting a 
dictionary in certain ways or finding the least element greater than a given element x. 

One of the most common ways of maintaining a dictionary is through the use of 
a binary search tree. This is a binary tree whose internal nodes correspond to the 
items in the dictionary. It is based on the ordering principle that, at each node, the 
items in the left subtree precede, and the items in the right subtree follow, the item 
at the node. This ordering principle enables the search for an item or the insertion 
of an item to be accomplished by following a single path through the tree, starting 
at the root; the operation of deletion is only slightly more complicated. 

There is an interesting parallel between the randomized quicksort algorithm 
described above and the behavior of binary search trees if the items are inserted in 
a random order. It can be shown quite easily that the number of comparisons need- 
ed in the randomized quicksort algorithm has the same probability distribution as 
the number of comparisons needed to insert n items into an initially empty binary 
search tree in random order. The reason for this is that we can view a binary search 
tree in two ways: as a tree resulting from insertions or as a depiction of the suc- 
cessive splittings used in Quicksort. This dual interpretation of binary search trees 
allows the transfer of the analysis of randomized Quicksort to yield the result that 
the expected insertion time or the expected time to access a random item is 
logarithmic if the items are inserted in random order. 

Since we cannot assume that the insertions are made in random order, there is 
a real possibility that a binary search tree may perform in a catastrophic manner. 
The worst case occurs when the sequence of insertions produces a “linear” tree, in 
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Fig. 2. Binary search tree, heap and treap. 

which all the items lie along a single long path. In this case, the insertion and access 

times are linear in n, rather than logarithmic. There are various standard ways to 

restructure binary search trees in the process of performing operations on them so 

as to guarantee that all of the execution times are logarithmic. In particular, AVL 

trees [l] and splay trees [44] achieve this effect. 

Here we will describe a very recent randomized approach to the maintenance of 

binary search trees using a new data structure due to Aragon and Seidel [4]. The 

structure is called a treap because it combines the ideas of binary search tree and 

heap. A heap is a binary tree with the following ordering principle: along any root- 

to-leaf path, the values of the items increase; thus, the value of any parent is less 

than the values of its children and, in particular, the smallest element appears at the 

root. 

A treap is a binary tree in which each item x has two associated values, x. key 

and x . priority, and which is simultaneously a binary search tree with respect to the 

key values and a heap with respect to the priority values (see Fig. 2). Given n items 

with associated key and priority values, it is easy to show that there is a unique tree 

structure for the corresponding treap, namely the tree structure obtained by inser- 

ting the keys in increasing order of priorities. 

The algorithms for maintaining a treap are slightly complicated, because, in order 

to maintain the binary search tree property and the heap property simultaneously, 

a certain amount of local restructuring is sometimes necessary. For example, the in- 

sertion of item (D,28) in the treap of Fig. 3(a) results in the tree shown in Fig. 3(b), 

which fails to be a heap with respect to the priority values. This requires a local rota- 

tion, and the treap properties are reestablished in Fig. 3(c). 

Aragon and Seidel give a clever application of the concept of treap to the problem 

of maintaining binary search trees. The idea is to use a binary search tree to main- 

tain a dictionary, but to use randomization in the following way: when an item is 

inserted, we draw a value from a continuous probabihty distribution and assign it 

to the item as its priority. This number provides a “random time stamp” for the 

item, and we require that the tree be a heap with respect to the random priorities. 

This has an interesting effect which facilitates the analysis of the expected time to 
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(a) (b) 

Fig. 3. Three binary trees. 

Cc) 

perform data structure operations. We have mentioned that for a given set of items 

having keys and priorities, there is a unique treap containing them. Suppose that 

we have performed a long sequence of insertions, deletions and accesses. A snapshot 

of the treap structure at any one time is independent of any items that were inserted 

and later deleted and is uniquely determined by the two fields of the items currently 

present in the treap. Therefore, the snapshot at any point in time is exactly the tree 

that would have been obtained if those items had been inserted into an initially emp- 

ty binary search tree in the order determined by their time-stamp priorities. Since 

the time stamps are completely independent and random, this means that at any 

fixed moment what we have statistically is a binary search tree obtained by random 

insertions. Thus, although the insertions were not performed in random order, the 

assignment of random priorities achieves an equivalent effect and we can apply the 

results regarding randomized Quicksort. To complete the analysis, it is also 

necessary to consider the cost of the rotations required to maintain the treap proper- 

ty; fortunately, Aragon and Seidel have shown that the expected number of rota- 

tions per insertion or deletion is less than 2. Thus, for a tree of size N occurring at 

any point in the history of a treap, the expected time for the next access, insertion 

or deletion is O(log N). Thus the approach based on random priorities is an elegant 

and efficient way to maintain binary search trees. 

7. Computational geometry 

About fifteen years ago computational geometry emerged as an important new 

area within the study of algorithms and their complexity. Since computational 

geometry deals in large part with data structures containing items with several keys 

(where each key typically corresponds to a coordinate in a d-dimensional Euclidean 

space) it is natural that many of the ideas developed in the context of sorting and 

searching carry over to computational geometry, where some of the combinatorial 

flavor is replaced by a geometric point of view. In particular, there has recently been 

high interest in randomized algorithms in computational geometry, and very 
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Fig. 4. A trapezoidal diagram. 

beautiful and practical results have been obtained. We will describe some of these 
results. 

7.1. Finding the planar partition determined by a set of line segments 

Suppose we are given a collection of line segments within a two-dimensional box. 
The planar partition associated with these segments is obtained by running, from 
each endpoint of a segment, and from each point where two segments intersect, a 
vertical line that continues, both upward and downward, until it intersects the boun- 
dary of the box or another segment. The result is a dissection of the box into 
trapezoids, and thus the planar partition is sometimes called the trapezoidal diagram 
associated with the set of line segments. Figure 4 shows the trapezoidal diagram 
associated with a set of four line segments. 

The problem of computing an explicit description of the trapezoidal diagram 
associated with a set of line segments is a classical one in computational geometry. 
The problem requires in particular the determination of all intersections of the given 
segments. Mulmuley [33] found a fast randomized algorithm for constructing the 
trapezoidal diagram. His algorithm is based on the introduction of randomization 
into a naive deterministic algorithm for the problem, and he proved that, through 
the use of randomization, the algorithm achieves a very favorable expected running 
time. The algorithm starts with no segments, and with a vertical line, extending from 
the top to the bottom of the bounding box, through each endpoint of the desired 
segments. It then adds segments, one at a time, in random order, updating the 
trapezoidal diagram after the addition of each segment. Each time a segment is 
added, the algorithm must trace along the length of that segment to find the vertical 
lines that insersect it and contract those vertical lines appropriately. It must also find 
any new segment intersections and create appropriate new vertical lines. 

Figure 5 illustrates the process. It shows the diagram at the stage when the dotted 
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Fig. 5. Step in the construction of a trapezoidal diagram. 

line segment is added. The segment is traced and, starting at its right endpoint, the 

algorithm encounters a vertical line whose upper part will have to be deleted from 

the structure, and two successive intersections with other segments through which 

new vertical lines must be added. 

Mulmuley’s insight is that if the segments are added in random order, then the 

solution tends to be obtained very rapidly. If the number of segments is n and the 

number of intersections is m, then the expected time to execute this algorithm is 

O(m + n log n). As usual, the expectation is over the random choices made by the 

algorithm, and the bound on expected time is valid for every instance of the prob- 

lem. This bound matches the performance of the best deterministic algorithm for 

this problem [lo], even though the deterministic algorithm is much more com- 

plicated . 
In measuring the work performed by Mulmuley’s algorithm, it is necessary to 

specify in some detail the data structures that will be maintained and to determine 

the expected contribution of various operations to the expected running time. For 

simplicity, we will concentrate on just one part of the analysis, the determination 

of the expected number of contractions of vertical segments. Consider an endpoint 

q and a vertical ray upward from q. Let Uq be the number of times this ray gets 

contracted. Note that Uq is a random variable, since it depends on the order in 

which the segments are added. If there are t segments crossing this ray, then the 

number of contractions may be as large as t if the segments are added in an unfor- 

tunate order. However, a segment L causes the line to be contracted only if L’s in- 

tersection with the ray is lower than that of any segment processed before L. Thus, 

if L’s intersection with the ray is the kth lowest, then the probability that L causes 

a contraction is l/k. It follows that the expected number of contractions is 

E[U,] =,c, +-In t. 
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7.2. Linear programming with a fixed number of variables 

This is another elegant example of the use of randomization in computational 

geometry. It is due to Clarkson [12]. The linear programming problem is, of course, 

to minimize a linear objective function c. x subject to a system of linear inequalities 

Ax< b. The data of the problem consists of the d-dimensional vector c, the n- 

dimensional vector b and the n x d matrix A. The solution is a d-dimensional vector 

X. 

Clarkson’s randomized method is effective when d, the number of variables, is 

very small compared to n, the number of constraints. It exploits the basic fact that 

the optimal solution to a d-dimensional linear programming problem is determined 

by d of its n constraints; if the other n -d constraints were deleted from the prob- 

lem, the optimal solution would be unchanged. Clarkson’s idea is to use random 

sampling to avoid considering irrelevant constraints. 

Let S be the set of constraints of the problem. Let Tbe a subset of S and let x*(T) 

be the solution which is optimal when we consider only the constraints in T (for ease 

of exposition we ignore the possibility that a subset of constraints may fail to have 

a bounded optimal solution). As the algorithm proceeds, it accrues a set I/* of con- 

straints that will be enforced at all times. The goal of the algorithm is to keep this 

set small while capturing all d of the constraints that determine the optimal solution 

of the problem. 

Algorithm 7.1 (Linear programming with a fixed number of variables). 

l (Initialization) V* +- @; 
l Repeat 

- Choose at random a set R c S of d$ constraints (recall that n is much larger 

than d); 
- solve, for example by the simplex method, the linear program with (small) 

constraint set I/* U R, obtaining a solution x*(V* U R); 
- x*+-x*(I’*U R); 
- inspect all constraints and determine the set I/of constraints that are violated 

by x*; 
- if V= @ then return x* and halt (all constraints are satisfied, and the answer 

to the problem is reported); 

- if ]1/152fithen I/* t I/* U I/ (the small set of currently violated constraints 

is added to the set of enforced constraints and the computation continues). 

Let us examine the performance of this algorithm. The optimal solution of the 

problem is determined by some set S* of d constraints. The algorithm will succeed 

as soon as S* is captured in the set of enforced constraints. Each time we solve a 

linear program with some set of constraints and find that F’, the set of violated con- 

straints, is nonempty, at least one constraint from S* is among the violated ones. 
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Thus, when we add Vto the set of enforced constraints, we capture at least one con- 

straint from S*. It follows that the set of enforced constraints will be augmented 

at most d times. Also, the size of the set of enforced constraints does not grow too 

large, since we add only 2fi constraints at a time. However, at each iteration in 

which there are more than 2fi violated constraints the algorithm fails to augment 

the set of enforced constraints, and thus fails to make progress. The crux of the 

analysis of the algorithm is to show that such useless iterations will not be too fre- 

quent. A probabilistic argument shows that, at each iteration, the probability that 

the number of violated constraints will exceed 2fi is less than +. It follows that the 

expected number of iterations is less than 2d. At each iteration a linear program with 

at most 3dfi constraints gets solved. It follows that the expected execution time of 

the entire algorithm is 

lgd+2 
o(@+o(i) 1. 

If we think of d as fixed and n as growing, then the dominant term is O(d2n). No 
deterministic algorithm for solving linear programs in a fixed number of dimensions 

is known to achieve as good a time bound. 

The idea of using random sampling, random partitioning and random ordering 

in computational geometry has led to a large number of elegant and efficient ran- 

domized geometric algorithms. Among these are eminently practical algorithms for 

hidden surface removal, for the computation of convex hulls in three dimensions, 

and for the dual problem of computing the intersections of a set of hyperplanes 

[l l-14,34,35,41]. 

8. Combinatorial enumeration problems 

With every nondeterministic polynomial-time Turing machine M one may 

associate both a decision problem and an enumeration problem. The decision prob- 

lem is to determine whether A4, on a given input x, has an accepting computation. 

The enumeration problem is to determine the number of accepting computations of 

machine A4 on input x. The class of decision problems associated with nondeter- 

ministic polynomial-time Turing machines is called NP, and the class of enumera- 

tion problems associated with such machines is called #P. Thus, each problem in 

#P can be viewed as counting the witnesses to instances of a problem in NP. 

Typical problems in # P include counting the perfect matchings, Hamiltonian cir- 

cuits or spanning trees of a graph, counting the total orders compatible with a given 

partial order, and counting the truth-value assignments satisfying a propositional 

formula. Spanning trees can be counted in polynomial time, since the Kirchhoff 

Matrix-Tree Theorem tells us that the number of spanning trees is given by the deter- 

minant of a certain integer matrix associated with the given graph. The other pro- 

blems appear to be much harder. In fact, the problems of counting perfect 
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matchings, Hamiltonian circuits, compatible total orders, and satisfying assign- 
ments are #P-complete; this means that every problem in #P is polynomial-time 
reducible to each of the three. Thus, if any one of the three problems were solvable 
in polynomial time, then every problem in #P would be solvable in polynomial 
time; this is very unlikely to be true. 

Recently there has been a wave of interest in polynomial-time randomized 
algorithms for the approximate solution of problems in #P. We will discuss some 
of the results that have been obtained. 

8.1. Randomized approximation algorithms for combinatorial enumeration 
problems 

The set-up is as follows: Let Z denote an instance of a problem, and let COUNT(Z) 
denote the number of solutions for instance I. For example, if the problem were to 
count perfect matchings, then Z would be a graph and COUNT(Z) would be the 
number of perfect matchings in that graph. Let A(Z) be the estimate of COUNT(Z) 
produced by the randomized approximation algorithm I. For fixed positive con- 
stants E and 6, algorithm A is called an &,&approximation algorithm if, for every 
instance Z, the probability that the relative error exceeds E is less than 6; i.e., 

ICOUN’UO-W)1 >E 

COUNT(Z) 

Thus, E can be viewed as an accuracy parameter and 6 as a confidence parameter. 
Often, we are interested in a family {AJ} of related approximation algorithms 
where, for all E > 0 and 6 > 0, AC,8 is an E, d-approximation algorithm. Such a fami- 
ly of approximation algorithms is called a polynomial-time approximation scheme 
if, for all E and 6, the execution time of AE,6 is bounded by a polynomial in n (the 
size of the instance), e-l and ln(6-‘). The logarithmic dependence on 6-l is natural 
for the following reason: suppose we can achieve the desired performance for all 
E when 6 = $; this means that every time we run the algorithm there is at most a 25% 
chance that our relative error will exceed E. Now suppose we want to achieve a 
higher level of confidence, corresponding to a smaller value of 6. We can repeatedly 
run the algorithm that has a 25% chance of making a relative error larger than E 
and then take, as our estimate of COUNT(Z), the median of the estimates produced 
in the individual runs. A straightforward probabilistic calculation shows that the 
number of iterations of the algorithm that works for a confidence level of: necessary 
for achieving a given confidence level 6 grows as ln(6-‘). Thus, for theoretical pur- 
poses, we may fix 6 at +. 

8.1.1. Estimating the cardinality of a union of sets 
The problem of finding the cardinality of a union of sets is a classical com- 

binatorial problem whose classical solution is given by the principle of inclusion and 
exclusion: 
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When t is large the direct evaluation of the inclusion-exclusion sum is not practical 
since the number of terms is 2’- 1. Furthermore, even though the inclusion- 
exclusion sum is bracketed between any two consecutive partial sums, the partial 
sums behave rather erratically and do not furnish a good approximation to the 
inclusion-exclusion sum. 

Instead, let us consider a randomized method which produces an estimate of the 
cardinality of a union of sets. This method requires three assumptions: that we 
should be able to determine easily the cardinality of each set Si, that we should be 
able to draw an element at random from the uniform distribution over any one of 
the sets, and that we should be able to test whether a given element lies in a given 
set. We will shortly see a concrete example where these conditions are fulfilled. 

We will define the coverage of an element x as the number of sets that contain 
x: cov(x) = 1 {i 1 x E Si} 1. The algorithm produces an estimator X of the cardinality 
of U Si using a two-stage sampling process: 

Algorithm 8.1 [25] (Estimating the cardinality of a union of sets). 
l Draw a set at random from the distribution in which the probability of drawing 

S; is proportional to its cardinality; i.e., Pr[&] = ISil/‘cf=i [Sjl; 
l having drawn Si, choose a random element x from Si; 
l by testing the membership of x in each Sj, determine cov(x); 
’ Xt cf=i lSil/COV(X). 

It is a simple exercise to show that X is an unbiased estimator of the cardin- 
ality of the union of sets: i.e., E[X] = IU &I. This suggests that we might es- 
timate lUSil by taking the average of N samples of the estimator X Y= 
(xi+x2+“’ +X,)/N. We require that Pr[((Y( - (USi()/(USi(>E]<~. A routine 
calculation involving bounds on the tails of the binomial distribution shows that a 
sample size sufficient for this purpose is N= t ln(2/6)4.5/&‘. 

There are a number of concrete problems which can be expressed as computing 
the cardinality (or probability, or measure, or volume) of a union of sets, and are 
amenable to this approach. A number of these applications are in reliability theory, 
but the simplest example is estimating the number of truth assignments satisfying 
a Boolean formula in disjunctive normal form (DNF). In this case Si is the set of 
truth assignments satisfying the ith term in the DNF formula. For example, if the 
formula is ~~x,~~Vn,x,Vx,x,~~V..., then Si consists of all truth assignments in 
which x1 is true, x2 is true and x3 is false. It is clear that the three assumptions re- 
quired by the method are satisfied, and thus we get a polynomial-time approxima- 
tion scheme for estimating the number of truth assignments satisfying a DNF 
Boolean formula. Even though the method is simple, this result is of interest because 
the problem of exactly counting the truth assignments satisfying a DNF formula is 
#P-complete. Note, however, that it is critical for the formula to be in disjunctive 



188 R. M. Karp 

normal form; a moment’s thought shows that, unless P=NP, there cannot exist a 

polynomial-time approximation scheme for the problem of counting the truth 

assignments satisfying a Boolean formula in conjunctive normal form. 

8.1.2. Estimating the permanent of a O-I matrix 
Another classical problem related to combinatorial enumeration is the computa- 

tion of the permanent of a n x n matrix A = (au). The permanent of A is defined as 

per(A) = C al,(r). a2a(2). a** . anocn). 
aes, 

The problem of computing the permanent of a n x n O-l matrix is equivalent to the 

#P-complete problem of counting the perfect matchings in a (simple) bipartite 

graph with n vertices in each part. 

Although the definition of the permanent resembles that of the determinant, the 

permanent seems to be much harder to evaluate; the best deterministic algorithm 

known is Ryser’s algorithm [39] based on inclusion-exclusion, which runs in time 

o(n2”). Many people have remarked that, since the determinant is easy to compute 

and has a definition resembling that of the permanent, there might be some way to 

use the ease of computing the determinant in a strategy for computing the perma- 

nent. We present here a randomized algorithm which exploits the following relation 

between permanent and determinant due to Godsil and Gutman: 

Given a O-l matrix A, let B be the random matrix (&au), where the 
plus and minus signs are chosen independently at random. Then 
E[det2(B)] = per(A). 

This suggests a Monte Carlo method in which one estimates per(A) as the mean of 

n independent samples, each of which is obtained by choosing random plus and 

minus signs to derive from A a random matrix B, and then computing det2(B). 

This method will perform quite poorly on certain examples. For example, if A has 

2 x 2 blocks of l’s on the main diagonal and O’s elsewhere, then the determinant of 

B will be zero whenever one of the 2 x 2 diagonal blocks has determinant zero. Each 

of the n/2 diagonal blocks independently has a 50% chance of having a zero deter- 

minant. Thus, Pr[det2(B) # 0] = 2-n’2. Therefore, a sample size around 2”‘2 will be 

needed in order to have a reasonable chance of ever observing a nonzero determi- 

nant. Still, an analysis based on estimating the variance of det2(B) and applying 

Chebyshev’s inequality yields the following result, showing that the randomized 

method has some advantages in comparison with Ryser’s deterministic algorithm, 

if one is willing to approximate the permanent rather than compute it exactly. 

Theorem 8.2 [24]. The number of trials needed for an ~,&approximation of the 
permanent of an n x n O-l matrix is less than C3n’2~-1 ln(&‘), where C is a 
constant. 
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The following refinement of the method reduces the variance of the estimator. In- 

stead of multiplying the entries of A randomly by + 1 and - 1, use cube roots of uni- 

ty: replace each entry aij independently and randomly by either aij, waij or o*aij, 

where o is a principal cube root of 1. Let the resulting random complex matrix be 

C. Then E[det(C) det(C)] =per(A), where z denotes the complex conjugate of the 

complex number z. Thus we can estimate per(A) by the mean of a number of 

samples, each of which is obtained by constructing from A the random complex 

matrix C, and then computing det(C) det(C). 

Theorem 8.3 [24]. The number of trials neededfor an E, &approximation to theper- 
manent of an n xn O-l matrix is less than C2n’2~P1 ln(6-‘). 

Although this Monte Carlo algorithm is an improvement over the best deter- 

ministic algorithm for computing the permanent of a O-l matrix, it requires ex- 

ponential time. What is really wanted is a polynomial-time approximation scheme 

for the problem. This has not been achieved, but there exists a mathematically in- 

teresting approach which yields such an approximation scheme in certain special 

cases. In preparation for presenting this approach, we need to discuss random walks 

on multigraphs. 

8.1.3. Random walk on a regular multigraph of degree d 
We consider a random walk on a finite N-vertex multigraph which is regular of 

degree d. Loops and multiple edges are allowed; each loop at a vertex contributes 

1 to its degree. The random walk associated with such a multigraph is defined as 

follows: when a vertex Di is reached, the walk continues along a randomly chosen 

edge incident to Ui. This random walk determines a Markov chain whose states are 

the vertices of the graph. If there are a edges between Ui and Vj, then the transition 

probability associated with a transition from Ui to Uj is given by Pij = a/d. In such 

a Markov chain, all states have the same stationary probability l/N. 

We shall be interested in how rapidly the Markov chain associated with a regular 

multigraph approaches its stationary distribution. Let p!) be the probability that 

the state at time t isj, given that the state at time 0 is i. As a measure of how rapidly 

the Markov chain mixes, we introduce the quantity A(t) = max;,j [#/(l/N)]; this is 

a measure, in relative terms, of how close the distribution of states after t steps 

comes to the stationary distribution, when nothing is assumed about the initial state. 

A chain is said to be rapidly mixing if A(t) converges rapidly to 1. If a chain is rapid- 

ly mixing, then one can start in an arbitrary initial state and reach a nearly uniform 

distribution over the states after a small number of transitions. 

We shall require sufficient conditions for a chain to be rapidly mixing. Jerrum 

and Sinclair [23] introduce the concept of the conductance of a Markov chain; the 

conductance of a chain (in the special case where the stationary distribution is 

uniform) is defined as the minimum, over all sets S of states containing at most half 

the states of the entire chain, of the conditional probability of escaping from S at 
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the next step, given that the present state is uniformly distributed over S. Thus, the 
conductance is 

where S ranges over all state sets of cardinality at most n/2. 
If a chain has high conductance, then it will not tend to get trapped in small sets 

of states, and it will be rapidly mixing. Specifically, we obtain the following result 
due to Jerrum and Sinclair [23]. 

Theorem 8.4. ~I(t)lN(l- G2/2)‘. 

Jerrum and Sinclair [23] discovered the following useful technique for bounding 
the conductance of a Markov chain with uniform stationary distribution. 

Theorem 8.5. Suppose that one can specify, for each two-element set {i, j} of states, 
a canonical simple path between i and j, such that no oriented edge appears in more 
than bN canonical simple paths. Then @? 1/(2bd). 

The application of random walks on multigraphs to combinatorial enumeration 
goes as follows. As a step towards approximately counting some set S of com- 
binatorial objects, one often wishes to sample almost uniformly from some 
associated set T of combinatorial objects. To sample from T, one can set up a ran- 
dom walk on a regular multigraph with vertex set r; if the random walk is rapidly 
mixing, then the sampling problem can be solved by simulating the walk from an 
arbitrary initial state for a small number of steps, and then observing the state, 
which will be nearly uniformly distributed over T. 

In the following sections we describe a very interesting application of the random 
walk method to the problem of estimating the number of perfect matchings in a 
bipartite graph. The approach was initiated by Broder [9] and the first rigorous 
proof of its efficiency in particular cases was given by Jerrum and Sinclair [23] using 
the theorems about conductance given above. 

X1.4. Estimating the number of perfect matchings in a bipartite graph 
Given a bipartite graph with m edges and n vertices in each part, let Mk denote 

the number of matchings of size k. We are interested in estimating M,,, the number 
of perfect matchings. If all the ratios Mk/Mk_, , k = 2,3, . . . , n were known, then M,, 
would be determined since i’V, is clearly equal to m. Broder’s idea is to obtain suf- 
ficiently good estimates of these ratios that, by multiplying them together, we obtain 
a good estimate of M,/M, . Each ratio Mk/Mk_ 1 can be estimated statistically by 
drawing a suitably large number of independent random samples from the uniform 
distribution (or from a nearly uniform distribution) over the set Mk U Mk_r, and 
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for this purpose one defines a random walk on a regular multigraph with vertex set 
M,UMk_r. We illustrate the approach by defining a random walk over 
IV,, UM,_t, the set of perfect and “near-perfect” matchings in the graph. 

In this case the state set is Ivan U M,, _ 1 and there are m equally probable transi- 
tions out of each state, corresponding to the m edges of the graph. To complete the 
description, we need to describe the transition corresponding to edge e when the 
state is M. There are five cases: 

l If A4 is a perfect matching and e@M, then the new state is M; 
l if A4 is a perfect matching and e EM, then the new state is M- {e>; 
l if Mis not a perfect matching and e is not incident with any vertex in M, then 

the new state is MU {e>; 
l if A4 is not a perfect matching and e is incident with exactly one vertex covered 

by A4, then there is a unique edge f E A4 such that MU e-f is a matching, and the 
new state is MU e-f; 

l if A4 is not a perfect matching and e is incident with two vertices covered by 
A4, then the new matching is M. 

This Markov chain corresponds to a random walk on a regular undirected graph 
of degree m with vertex set A4,, U A4,, _ 1. Jerrum and Sinclair [23] prove that, if the 
underlying n-vertex graph within which we are trying to count perfect matchings is 
dense, meaning that all degrees are greater than n/2, then the conductance of the 
Markov chain is at least l/(12&. This establishes that one can sample from a 
distribution over A4,, U A4, _ 1 which is exponentially close to the uniform distribu- 
tion by simulating a polynomial-bounded number of steps of this Markov chain. 
Similar results hold for similarly defined Markov chains on A4k U Mk-1, for 
k = 2,3, . . . , n - 1. It follows that, in the case of dense bipartite graphs, there is a 
polynomial-time randomized approximation scheme for the problem of counting 
perfect matchings. The paper [16] extends this result to a broader class of bipartite 
graphs. However, it remains an open question whether there exists a polynomial- 
time randomized approximation scheme for the problem of counting perfect match- 
ings in an arbitrary bipartite graph. 

8.1.5. Estimating the volume of a convex body 
The idea of applying rapidly mixing Markov chains to combinatorial enumeration 

problems has been extremely influential, and has stimulated a great deal of research. 
One of the most striking recent results in this direction is due to Dyer, Frieze and 
Kannan [17], who gave a polynomial-time randomized approximation scheme for 
the problem of computing the volume of a convex body L. The principal input to 
the algorithm of Dyer, Frieze and Kannan is a membership oracle; i.e., a black box 
that will answer any query of the form “Does point x lie in L?“. For technical 
reasons, two additional input items are required: a ball of positive volume contained 
in L and a ball containing L. 

We shall not do more than sketch the approach taken by Dyer, Frieze and Kan- 
nan. The first step is to give a reduction showing that the problem of estimating the 
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volume of L is polynomial-time reducible to the following problem: given a 

membership oracle for a convex body K, draw a point x from a “nearly uniform” 

distribution over K. In order to sample from K, they approximate K by a very slight- 

ly larger convex body which can be described as the union of a large number of con- 

gruent n-dimensional hypercubes. They then introduce a random walk on a regular 

graph of degree 2n whose vertices are the hypercubes. The edges of this graph inci- 

dent with a given hypercube Hare in one-to-one correspondence with the 2n (n - l)- 

dimensional facets of H. For a given facet F of H the transition is as follows: If 

H shares the facet F with another hypercube H’, then the transition is to H’, else 

the walk remains at H. 
Let @ be the conductance of this random walk. Using isoperimetric inequalities 

relating the volume and the surface area of smooth manifolds, it is possible to show 

that the reciprocal of @ is bounded above by a polynomial in n. Hence the walk is 

rapidly mixing. 

The existence of a polynomial-time randomized approximation scheme for the 

problem of computing the volume is surprising for several reasons: 

l The problem of computing the volume exactly is #P-complete. 

l According to a result in [S], any deterministic algorithm based on membership 

queries requires a number of queries exponential in n in order to guarantee an ap- 

proximation to the volume with bounded relative error; thus randomization is essen- 

tial for the result. 

l The result implies a polynomial-time randomized approximation scheme for 

the seemingly difficult problem of computing the number of linear orderings com- 

patible with a given partial ordering. 

9. Randomization in parallel and distributed computation 

In this section we briefly indicate some of the uses of randomization in parallel 

and distributed computing. 

9. I. Dynamic task scheduling 

The design of efficient parallel algorithms often entails decomposing a computa- 

tion into smaller tasks and scheduling the execution of these tasks on individual pro- 

cessors. An ideal scheduling algorithm is one which keeps all the processors busy 

executing essential tasks, and minimizes the interprocessor communication required 

to determine the schedule and pass data between tasks. The scheduling problem is 

particularly challenging when the tasks are generated dynamically and unpredictably 

in the course of executing the algorithm. This is the case with many recursive divide- 

and-conquer algorithms, including backtrack search, game tree search and branch- 

and-bound computation. 

Karp and Zhang [29,50] have shown that randomization is a powerful tool for 
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solving dynamic task scheduling problems. We illustrate the approach with a simple 

model problem related to parallel backtrack search. In this case the set of tasks is 

a rooted binary tree whose shape is initially unknown to the parallel algorithm. In- 

itially, only the root of the tree is given. The primitive unit-time computational step 

is called node expansion. The step of expanding a node x either determines that x 

is a leaf of the rooted tree or else creates the children of x. The goal is to expand 

every node of the tree, using p processors. In order to balance the workloads of the 

processors, it will also be necessary for nodes to be sent from one processor to 

another, and we assume that it takes one unit of time for a processor to send or 

receive a node. 

If the tree contains n nodes, then n/p is clearly a lower bound on the time of any 

parallel algorithm with p processors. Also, if the maximum number of nodes on a 

root-leaf path is h, then h is a lower bound, since the tasks along a path must be 

executed sequentially. Thus, a randomized parallel algorithm that, with high prob- 

ability, executes all tasks within time 0(&p + h) may be considered optimal. Karp 

and Zhang have given an optimal algorithm which has the additional nice property 

that it is completely decentralized and requires no global control or global data 

structures. At any point in the execution of this algorithm, each node that has been 

created but not yet executed is assigned to a processor. A processor is called idle if 

no nodes are assigned to it, and backlogged if more than one node is assigned to 

it. Each step consists of three parts: first, each idle processor requests data from a 

randomly chosen processor; then, each backlogged processor which has received a 

request chooses a random requesting processor and donates its rightmost task (with 

respect to the left-to-right ordering implicit in the rooted tree); finally, each pro- 

cessor that is not idle executes one of its tasks. It can be proved that, with high pro- 

bability, this simple randomized scheme yields an execution time bounded by a 

constant times the lower bound of max(n/p,h). 

9.2. Symmetry breaking in distributed computation 

Randomized algorithms have found many useful and elegant applications in the 

area of protocols for distributed systems. In distributed systems there are a large 

number of processes executing concurrently and asynchronously, each with only in- 

complete knowledge of what the other processes are doing. Many of the problems 

revolve around symmetry breaking; that is, the use of randomization to make a 

choice between two or more alternatives that look identical. 

We will use a metaphor to describe one typical example of a distributed system 

problem that can be attacked using randomization. Suppose that a tour group is to 

gather at one of the two entrances to a railroad station. However, the station is so 

free of landmarks that there is no canonical way to distinguish between the two en- 

trances: they cannot be referred to as “the entrance by the newsstand” or “the 

north entrance”. However, near each entrance is a small bulletin board on which 

messages can be left. How can the tourists arrange to convene at a common en- 
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trance, when they may only communicate via the bulletin boards? This problem is 
called the choice coordination problem. 

The problem arises in computer systems in various ways, for example, when a 
large group of users must reach agreement on which of two versions of a distributed 
data structure to use, even though they have no agreed-upon way of naming the two 
versions or distinguishing one from the other. 

Rabin [38] has given an elegant and efficient randomized solution to this problem. 
The problem is defined abstractly as follows. There are n indistinguishable processes 
that must coordinate their choices. All processes are to execute the same algorithm. 
The computation is asynchronous; thus, at any point in the computation, any pro- 
cess that is ready to execute a step may be the next one to do so. There are two 
memory cells (corresponding to the bulletin boards associated with the two en- 
trances to the station). The algorithm executed by each process consists of a se- 
quence of indivisible actions. An indivisible action has two parts: reading one of the 
two memory cells and (optionally) writing a value back into the same cell. When 
the computation terminates, exactly one of the two memory cells is to contain the 
special value 0 ; the result of the choice coordination process is the selection of the 
cell that ultimately contains q . 

In Rabin’s randomized protocol the contents of a cell is either the special symbol 
q or an ordered pair [n, b], where n is a nonnegative integer and b is either 0 or 
1. Initially, each cell contains the ordered pair [0, 01. Each process executes the 
following brief but intricate algorithm, in which the variable m denotes a positive 
integer and r and t denote binary digits. 

l m+O; rcrandom bit; t+O 
l repeat the following primitive action forever 

l r t 1 - r; x + contents of cell r 
- Case 1: x=0: halt; 
- Case 2: x= [n, b] 

(a) m<n or (m=n and t<b): [m,t]+[n,b]; 
(b) [m, f] = [n, b]: [m, t] + contents of cell Y+- [m + 1, random bit]; 
(c) m>n or (m=n and t>b): contents of cell rt 0; halt. 

The reader is invited to prove that Rabin’s protocol is correct, and that the follow- 
ing is true for every positive integer k: the probability that some process will execute 
more than k primitive actions before the protocol halts is not greater than 2-k. 
Since the protocol is correct and tends to terminate rapidly, it constitutes a highly 
effective randomized solution to the choice coordination problem. 

10. Interactive proofs 

During the past few years complexity theorists have been intensely investigating 
a radical new concept of mathematical proof. In an interactive proof one 
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demonstrates that a statement is true not by deriving it within a formal system of 
axioms and rules of inference, but by performing some feat that would not be pos- 
sible unless the statement were true. The concept of interactive proof was first de- 
fined in [20]. 

An interactive proof is a dialogue conducted by two randomized algorithms, the 
prover P and the verifier V. The dialogue begins when both P and V receive the in- 
put x, and the object of the dialogue is to enable V to decide whether x has a certain 
property 17. In the course of conducting the protocol the two parties send messages 
back and forth. It is required that the total length of these messages be bounded by 
a polynomial in the length of the input x. It is also required that V be a polynomial- 
time randomized algorithm; P, on the other hand, is allowed to have unlimited com- 
putational power. The dialogue always ends with a decision by V as to whether x 
lies in L. Informally, the role of P is to persuade V that x has property Z7, and the 
role of V is to put questions to P that P will be able to answer in a satisfactory way 
if and only if x actually does have property 17. 

In order for the pair P, V to qualify as an interactive proof of membership in L, 
the following two properties must be satisfied: 

l completeness: if x has property 17, then, with high probability, the dialogue be- 
tween P and V will end in the acceptance of x; 

l soundness: if x does not have property 17, then, even if P is replaced by some 
other randomized algorithm P* (i.e., even if the prover cheats), the probability that 
the dialogue will end in acceptance of x is very small. 

It is clear that every problem in NP has an extremely simple interactive proof in 
which both the prover and the verifier are deterministic. In the case where the input 
x has property 17, P simply sends a witness to this fact, and V verifies the validity 
of the witness. The ability of P and V to randomize, combined with the possibility 
of a multi-stage dialogue, permits the construction of interactive protocols for prob- 
lems that appear not to lie in NP. In fact, Shamir [42] has shown that the collection 
of problems for which interactive protocols exist is precisely the class of problems 
solvable by Turing machines within polynomial space; this class is believed to be far 
more extensive than NP. 

As an example, let us give an interactive protocol for the graph nonisomorphism 
problem, in which the input string represents a pair G, H of graphs, and 17 is the 
property that G and Hare not isomorphic. The dialogue consists of a sequence of 
rounds. In each round, V tosses a fair coin and, depending on the outcome of the 
coin toss, selects either G or H. Then, using randomization, V constructs a graph 
K that is isomorphic to the selected graph, but differs from the selected graph by 
having the names of the vertices randomly permuted. Then V sends K to P and 
challenges P to declare whether it is G or H that was selected and scrambled in order 
to produce K. In the case where G and H are not isomorphic, P gives the unique 
correct reply; otherwise he arbitrarily chooses G or H. The verifier V declares that 
G and Hare nonisomorphic if and only if P gives the correct answer in each of a 
long series of rounds. If G and H are not isomorphic, then P, by virtue of his 
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unlimited computing power, will always be able to determine whether K came from 
G or from H, and thus will be able to persuade I/ to accept G, H; this is the basis 
for the completeness of the protocol. If G and N are isomorphic, then P, being 
unaware of V’s coin tosses, will be making a pure guess each time as to whether K 
comes from G or from H, and thus will be very unlikely to answer correctly every 
time; this is the basis for the soundness of the protocol. 

The protocol for graph nonisomorphism has the further property of being a zero- 
knowledge protocol; this means that, in the course of demonstrating that G and H 
are nonisomorphic, P reveals no information about the two graphs except the fact 
that they are not isomorphic. This property is useful in the application of interactive 
protocols to various kinds of business transactions between mutually distrustful par- 
ties. For example, if the purpose of the protocol were for P to identify himself to 
V by proving that he possessed a certain piece of secret information (P’s digital 
signature), it would be undesirable if the dialogue were to leak anything about the 
signature except its correctness, since V might be able to use the leaked information 
to guess the secret information and thereby impersonate P. 

11. Randomness as a computational resource 

We have seen that randomized algorithms are often simple, beautiful and effi- 
cient, but is there such a thing as a randomized algorithm? Do computers really have 
available a source of random bits? One approach, which has often been proposed 
but seldom put into practice, is to build into a computer a physical source of ran- 
domness based on shot noise or some other process that is random at the quantum- 
mechanical level. The more common approach in practice is to use a “random 
number generator”; i.e., an algorithm which starts with a short “seed” which is 
presumed to be random and produces from it a long bit string which has some of 
the mathematical properties that random strings are expected to have. 

It is clear that random bits, if they can be produced at all, will be slow and costly 
to generate. For this reason, there has been considerable interest in reducing the 
number of truly random bits that algorithms require, or else showing that imperfect 
sources of randomness are adequate. We shall briefly describe some possible ap- 
proaches. 

11.1. Techniques for finding a witness 

As we discussed earlier in the paper, a Monte Carlo algorithm receives, in addi- 
tion to its input data X, a string y of random bits of some length n determined by 
the length of x. The string x is to be accepted if and only if at least one string y is 
a “witness” to the acceptance of x. The salient property of a Monte Carlo algorithm 
is that witnesses are either nonexistent or abundant; more precisely, if x is to be ac- 
cepted, then at least half of the n-bit strings are witnesses. 
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We would like an algorithm that doesn’t use too many random bits but has an 
extremely high probability of finding a witness whenever witnesses exist. One way 
is to keep generating random n-bit strings; at each trial, the probability of failing 
to find a witness is at most 3. A more efficient approach, first proposed in [26,43], 
is based on a special type of bipartite graph called a disperser. A (d, n, t)-disperser 
is regular of degree d, has a vertex set consisting of two copies, A and B, of (0, l}“, 
and has the property that, for every t-element set WA, at least half the vertices 
in B are adjacent to at least one vertex in T. In order to find a witness, we can ex- 
pend n bits to generate a random vertex a~,4 and then test for witnesshood all d 
of the n-bit strings in B that are adjacent to a. The probability that we will fail to 
find a witness in this way is at most t2-“. It is possible to efficiently construct 
families of dispersers in which d is a polynomial in n and t = 2”‘, where c is a con- 
stant less than 1. This leads to randomized algorithms that use n random bits, for 
which the probability of failing to find a witness when one exists is exponentially 
small in n. The paper [15] is a recent survey covering the construction and applica- 
tion of dispersers. Other approaches to the efficient generation of witnesses involve 
random walks on expanders [3] and the use of universal families of hash functions 
[22]. The first of these approaches allows the error probability of a Monte Carlo 
algorithm to be reduced to 2-k using O(n + k) bits. 

I I .2. k-wise independent random variables 

Certain randomized algorithms do not require a source of completely independent 
random bits; instead, it is sufficient that each individual bit shall have an equal 
chance of being 0 or 1, and that the stream of bits shall be k-wise independent. This 
latter property means that any k of the bits in the sequence are mutually independent. 
Because k-wise independence is often sufficient, considerable attention has been 
devoted to the generation of long k-wise independent bit strings from short strings 
of completely independent bits. One powerful approach is as follows. Let A be a 
m x n matrix over GF[2], the field with two elements, such that any k rows are 
linearly independent; the construction of such matrices is a well-studied central 
problem in the theory of error-correcting codes. Let b be a n-vector of completely 
independent random bits, each of which is equally likely to be 0 or 1. Then the m- 
vector Ab has the property that its components are k-wise independent, and that 
each component is equally likely to be 0 or 1. A related construction works over 
ZP, the integers modulo a prime p. In order to generate a sequence b,, bl, . . . , bP_l 
of p k-wise independent elements, each of which is uniformly distributed over ZP, 
we start with a seed ao, aI, . . . , ok-l consisting of k mutually independent elements, 
each of which has the uniform distribution over i&, and generate the desired se- 
quence according to the formula 

Thus, the elements of the seed are used as the coefficients of a polynomial, and the 
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long sequence is formed by the values of the polynomial at i = 0, 1, . . . ,p - 1. 
In cases where pairwise independence is sufficient, it is often possible to eliminate 

randomization altogether. For example, Luby (3 11 has given a randomized parallel 
algorithm for constructing a maximal independent set of vertices in a graph. The 
algorithm requires a sequence of p pairwise independent elements, each drawn from 
the uniform distribution over Z$,. Such a sequence can be formed from a seed con- 
sisting of two elements of Z$. An alternate interpretation is that we are working 
with a very small probability space whose points are the p2 possible seeds, rather 
than the very large probability space that would be required if we were generating 
completely independent random elements of ZP. Therefore, we can simply 
enumerate all the possible seeds (Q, aI) and run the algorithm for each one. By the 
same argument that justifies the correctness of the original randomized algorithm, 
most of these choices have to work. Hence, at the cost of some additional computa- 
tion, randomness can be eliminated entirely. 

11.3. Imperfect sources of randomness 

One difficulty with the available physical sources of randomness is that they 
generate correlated sequences of bits, rather than the completely independent ran- 
dom bits that one would ideally want. This difficulty has motivated Vazirani and 
Vazirani [48] to investigate the power of algorithms based on imperfect sources of 
randomness. They define a slightly random source as one which satisfies the follow- 
ing very weak requirement: at any step, the conditional probability that the next bit 
will be 0, given the entire past sequence of bits, lies between a and 1 -a, where a 
is some fixed positive constant. Vazirani and Vazirani show that, if a problem can 
be solved by a polynomial-time Monte Carlo algorithm using an ideal source of ran- 
dom bits, then the problem can also be solved using an arbitrary slightly random 
source. 

11.4. Pseudo-random number generators 

A pseudo-random number generator [8,49] is defined as a parametrized sequence 
of functions g= {g,}, such that each function g, : (0, I}“- (0, I}‘(“) takes a seed 
consisting of n bits and “stretches” that seed, by a deterministic process, to a longer 
string of length t(n). For example, we may have t(n) = n2. We say that such a se- 
quence of functions is a pseudo-random number generator if no test that can be im- 
plemented in polynomial time, even with the help of true randomness, can 
distinguish the outputs of the generator from a random sequence. This property has 
the consequence that, in any polynomial-time randomized algorithm, the output of 
a pseudo-random number generator can safely be used in place of an ideal source 
of random bits. 

It turns out, somewhat surprising, that there is a profound connection between 
the concept of a pseudo-random number generator and the concept of a one-way 
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function, which is of central importance in cryptography. A one-way function is, 
roughly speaking, a function that is easy to compute but hard to invert. More 
specifically, a one-way permutation is a sequence f = {f,}, where each f, is a one- 
to-one function from (0, l}” onto itself, such that f(x) can be computed in 
polynomial time, but no randomized polynomial-time algorithm has a significant 
chance of computing the preimage f-‘(y) for a randomly chosen element y. 

It is not known whether one-way functions exist. If P = NP, then they definitely 
do not exist. There are, however, a number of seemingly intractable problems in 
number theory which have been conjectured to give rise to one-way permutations. 
One example is the discrete logarithm problem. Let p be a prime and let g be a 
generator of Z;. Let f(x) = g’. Then f is easy to compute but its inverse function, 
the discrete logarithm, seems intractable. 

It has recently been proven 1211 that every one-way function can be used to con- 
struct a pseudo-random number generator. In the case where the one-way function 
is a permutation f, the construction of the generator is particularly simple. The seed 
consists of two strings, XE (0, I}” and y E (0, l}“, and the output of the generator 
is obtained by iterating f on x and computing the scalar product (mod 2) of each 
iterate withy:x.y,f(x).y,f(f(x)).y ,..., fikl(x).y ,.... 
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