
Discrete Applied Mathematics 34 (1991) 165-201

North-Holland

165

An introduction to randomized
algorithms

Richard M. Karp *

Computer Science Division, University of California, Berkeley,

International Computer Science Institute, Berkeley, CA 94704, USA

Received 6 November 1989

Revised 6 April 1990

Abstract

CA 94720, USA; and

Karp, R.M., An introduction to randomized algorithms, Discrete Applied Mathematics 34 (1991)

165-201.

Research conducted over the past fifteen years has amply demonstrated the advantages of

algorithms that make random choices in the course of their execution. This paper presents a wide

variety of examples intended to illustrate the range of applications of randomized algorithms, and

the general principles and approaches that are of greatest use in their construction. The examples

are drawn from many areas, including number theory, algebra, graph theory, pattern matching,

selection, sorting, searching, computational geometry, combinatorial enumeration, and parallel

and distributed computation.

1. Foreword

This paper is derived from a series of three lectures on randomized algorithms

presented by the author at a conference on combinatorial mathematics and

algorithms held at George Washington University in May, 1989. The purpose of the

paper is to convey, through carefully selected examples, an understanding of the

nature of randomized algorithms, the range of their applications and the principles

underlying their construction. It is not our goal to be encyclopedic, and thus the

paper should not be regarded as a comprehensive survey of the subject.

This paper would not have come into existence without the magnificent efforts

of Professor Rodica Simion, the organizer of the conference at George Washington

University. Working from the tape-recorded lectures, she created a splendid

transcript that served as the first draft of the paper. Were it not for her own reluc-

tance she would be listed as my coauthor.

* Research supported by: NSF Grant CCR-8411954.

0166-218X/91/$03.50 0 1991 - Elsevier Science Publishers B.V. All rights reserved

R.M. Karp

2. Introduction

A randomized algorithm is one that receives, in addition to its input data, a

stream of random bits that it can use for the purpose of making random choices.

Even for a fixed input, different runs of a randomized algorithm may give different

results; thus it is inevitable that a description of the properties of a randomized

algorithm will involve probabilistic statements. For example, even when the input

is fixed, the execution time of a randomized algorithm is a random variable.

Isolated examples of randomized algorithms can be traced back to the very early

days of computer science, but the central importance of the concept became general-

ly recognized only about fifteen years ago. Among the key early influences were the

randomized primality test developed by Solovay and Strassen [45] and a paper by

Rabin [37] which drew attention to the general concept of a randomized algorithm

and gave several nice applications to number theory and computational geometry.

Also noteworthy is an early paper by Gill [19] which laid the foundations for the

extension of abstract computational complexity theory to include randomized

algorithms.

By now it is recognized that, in a wide range of applications, randomization is

an extremely important tool for the construction of algorithms. There are two prin-

cipal types of advantages that randomized algorithms often have. First, often the

execution time or space requirement of a randomized algorithm is smaller than that

of the best deterministic algorithm that we know of for the same problem. But even

more strikingly, if we look at the various randomized algorithms that have been in-

vented, we find that invariably they are extremely simple to understand and to im-

plement; often, the introduction of randomization suffices to convert a simple and

naive deterministic algorithm with bad worst-case behavior into a randomized

algorithm that performs well with high probability on every possible input.

In the course of these lectures we will touch on a wide range of areas of applica-

tion for randomized algorithms. We will discuss randomized algorithms in number

theory and algebra, randomized algorithms for pattern matching, sorting and

searching, randomized algorithms in computational geometry, graph theory and

data structure maintenance, and randomized techniques in combinatorial enumera-

tion and distributed computing. This means that there will be many kinds of

mathematics involved, but we will omit hard proofs and we will only draw on

elementary mathematical methods.

The unifying theme of these lectures will be the fact that a handful of basic prin-

ciples underly the construction of randomized algorithms, in spite of the wide varie-

ty of their application. These principles will become more meaningful as we progress

through the lectures, but let us mention some of them as a preview.

Abundance of witnesses. Randomized algorithms often involve deciding whether

the input data to a problem possesses a certain property; for example, whether an

integer can be factored. Often, it is possible to establish the property by finding a

certain object called a witness. While it may be hard to find a witness deter-

Randomized algorithms 167

ministically, it is often possible to show that witnesses are quite abundant in a cer-

tain probability space, and thus one can search efficiently for a witness by

repeatedly sampling from the probability space. If the property holds, then a witness

is very likely to be found within a few trials; thus, the failure of the algorithm to

find a witness in a long series of trials gives strong circumstantial evidence, but not

absolute proof, that the input does not have the required property.

Foiling the adversary. A game-theoretic view is often useful in understanding the

advantages of a randomized algorithm. One can think of the computational com-

plexity of a problem as the value of certain zero-sum two-person game in which one

of the players is choosing the algorithm and the other player, often called the adver-
sary, is choosing the input data to foil the algorithm. The adversary’s payoff is the

running time of the algorithm on the input data chosen by the adversary. A ran-

domized algorithm can be viewed as a probability distribution over deterministic

algorithms, and thus as a mixed strategy for the player choosing the algorithm.

Playing a mixed strategy creates uncertainty as to what the algorithm will actually

do on a given input, and thus makes it difficult for the adversary to choose an input

that will create difficulties for the algorithm.

Fingerprinting. This is a technique for representing a large data object by a short

“fingerprint” computed for it. Under certain conditions, the fact that two objects

have the same fingerprint is strong evidence that they are in fact identical. We will

see applications of fingerprinting to pattern matching problems.

Checking identities. It is often possible to check whether an algebraic expression

is identically equal to zero by plugging in random values for the variables, and

checking whether the expression evaluates to zero. If a nonzero value ever occurs,

then the expression is not an identity; if the value zero occurs repeatedly, then one

has strong evidence that the expression is identically zero.

Random sampling, ordering and partitioning. Randomized algorithms for tasks

such as sorting and selection gather information about the distribution of their input

data by drawing random samples. For certain problems it is useful to randomize the

order in which the input data is considered; in such cases, one can show that, for

every fixed array of input data, almost all orderings of the data lead to acceptable

performance, even though some orderings may cause the algorithm to fail. In a

similar way, randomized divide-and-conquer algorithms are often based on random

partitioning of the input.

Rapidly mixing Markov chains. Several randomized algorithms for the approx-

imate solution of combinatorial enumeration problems are based on the ability to

sample randomly from a large, structured set of combinatorial objects. The sam-

pling process is based on a Markov chain whose states correspond to these com-

binatorial objects. A crucial issue in such cases is to show that the Markov chain

converges rapidly to its stationary distribution.

Load balancing. In the context of distributed computation, randomization is

often used to even out the assignment of computational tasks to the various process-

ing units.

168 R. M. Karp

Symmetry breaking. In distributed computation, it is often necessary for a collec-

tion of computational processes to collectively make an arbitrary but consistent

choice from a set of essentially indistinguishable possibilities. In such cases, ran-

domization is useful for breaking symmetry.

In addition to describing and illustrating how the above ideas are used in the con-

struction of randomized algorithms, we shall briefly discuss some general concepts

related to randomized algorithms. Among these are the following.

Randomized complexity classes. Within computational complexity theory there

has been an effort to study the class of problems solvable in polynomial time by ran-

domized algorithms. Because of the probabilistic nature of the performance

guarantees for randomized algorithms, several quite different reasonable definitions

of this class have been proposed.

Interactive proofs. In an interactive proof, a prover demonstrates that a theorem

is true by performing some task that would be impossible to perform if the theorem

were false. Usually this task consists of giving the correct answers to a sequence of

questions drawn at random from some set.

Randomness as a computational resource. In practice, randomized algorithms do

not have access to an unlimited supply of independent, unbiased random bits.

Physical sources of randomness tend to produce correlated sequences of bits. There

is a large body of current research concerned with using imperfect sources of ran-

domness and with stretching short random bit strings into much longer strings

which, although not random, cannot easily be distinguished from truly random

strings by computational tests.

Eliminating randomization. One way to obtain a deterministic algorithm is to

first construct a randomized algorithm and then eliminate the randomization. We

shall briefly touch on methods for accomplishing this.

3. Number theory

During the 197Os, a number of powerful randomized algorithms were discovered

in the field of number theory. These algorithms were an important early stimulus

to the study of randomized algorithms. In order to describe the properties of some

of these algorithms, we will need a little elementary number theory.

Let p be a prime and let Z; = { 1,2, . . . ,p - l}. Zz is a cyclic group under the

operation of multiplication modulo p. There are low-degree polynomial-time

algorithms to compute the inverse a -’ of an element a E Zp* (this can be done by the

Euclidean algorithm) and powers a’ of an element in Z,* (by successive squaring).

An element ae.Z,* is said to be a quadratic residue if it is a perfect square in Z,*,

i.e., if there exists z E Zz such that .z2 = a. The Legendre symbol (a/p) of an element

a E Z: is an indicator of whether the element is a perfect square. It is defined as 1

if a is a quadratic residue and -1 otherwise. The Legendre symbol has the

multiplicative property (a,a2/p) = (al/p)(a2/p). It also follows from the fact that Z,*

Randomized algorithms 169

is a cyclic group that (a/p) = a (p-1)‘2. In particular, this shows that the Legendre
symbol is easy to compute.

3.1. Square roots module p

One of the earliest randomized algorithms in number theory was for finding a
square root of aEZ:, given that a is a quadratic residue. There is an explicit for-
mula for the square root when p = 3 (mod 4). The following algorithm for the
general case has been attributed to D.H. Lehmer. It also emerges as a special case
of Berlekamp’s algorithm [7] for factoring polynomials with coefficients in Z,,.

Suppose we know that a is a quadratic residue in Z: and we want to find its
square roots. In other words, we want to factor the polynomial x2-a over Z;. It
is sufficient, instead of factoring x2 -a, to obtain a factorization of the polynomial
(x-c)2-a, for some c~Zp*, since this amounts to simply shifting the roots of
x2 - a. Thus, suppose (x - c)~ - a = (x- r)(x - s). Then rs = c2 - a, and (r/p)(s/p) =

((c2-a)/~). If, upon choosing c and computing ((c2-a)/p), it turns out that
((c2 - a)/p) is not 1, then we know from the multiplicative property of the Legendre
symbol that exactly one of r and s is a quadratic residue. On the other hand, the
quadratic residues in ZT are the roots of the polynomial x(~-~)‘~- 1; hence, the
greatest common divisor of (x- c)~ - a and x@-~)‘~ - 1 is a first-degree polynomial
whose root is that root of (x - c)~ - a which is a quadratic residue. So we choose c
randomly, check whether c2 -a is a quadratic residue and, if it is not, then easy
computations will yield a root of (x - c)~ - a from which we can obtain fi. These
ideas lead to the following algorithm.

Algorithm 3.1 (Finding square roots in Z,*>.
l Choose c at random from Zp*;
l if ((c2- a)/p) = -1 then compute gcd(x (p-l)‘2 - 1, (x- c)~ - a); the result is

ox - /? and a zero of (x- c)~ - a is r = a-‘/l; return fi = &(c + r).

The fundamental question is: how abundant are those elements c such that c2 - a

is a quadratic nonresidue? It can be proven that more than half the elements of Z,*
have this property:

Theorem 3.2. Given a quadratic residue a EUz, if c is chosen at random from Z;

then, with probability larger than +, we have ((c’- a)/p) = -1.

This is an example of a randomized algorithm that depends on the abundance of
witnesses. It is a Las Vegas algorithm; i.e., it provides a solution with probability
larger than 3 and never gives an incorrect solution. Often we have to settle for a
weaker result: a Monte Carlo algorithm. The concept of a Monte Carlo algorithm
applies in situations where the algorithm makes a decision or a classification, and

170 R.M. Karp

its output is either yes or no. A Monte Carlo algorithm is a randomized algorithm

such that, if the answer is yes, then it confirms it with probability larger than 5, but

if the answer is no, then it simply remains silent. Thus, on an input for which the

answer is no, the algorithm will never give a definitive result; however, its failure

to give a yes answer in a long series of trials gives strong circumstantial evidence that

the correct answer is no. We will shortly see a Monte Carlo algorithm for testing

whether an integer is composite. The class of decision problems for which

polynomial-time Monte Carlo algorithms exist is called RP. The class for which

polynomial-time Las Vegas algorithms exist is called ZPP. It is easy to see that

ZPP = RP fl co-RP, where a language is in co-RP if its complement is in RP.

We should point out that there are other kinds of randomized algorithms that

make errors: they give an incorrect answer with no indication that the answer is

wrong. Such an algorithm is said to be a bounded-error randomized algorithm if

there exists a constant E>O such that, on every input, the probability with which

it gives a correct answer is at least 3 + E. A bounded-error randomized algorithm is

quite useful because if, say, E = .l, then, every time the algorithm is run the answer

provided is correct with probability at least .6, and this probability can be amplified

at will by running the algorithm repeatedly and taking the most frequent answer.

On the other hand, an unbounded-error randomized algorithm is one that gives the

correct answer with probability which is greater than 3, but is not bounded away

from 3 by any fixed amount. In this case there is no statistical method of using

repeated trials in order to get high confidence in the answer. This makes unbounded-

error algorithms rather impractical, but they have been the object of some nice

theoretical studies.

3.2. Monte Carlo test for compositeness

The 1970s produced two famous polynomial-time Monte Carlo algorithms for

testing whether a given integer is composite [45,37]. We shall present the one due

to Solovay and Strassen. Given a positive integer n, not necessarily prime, let

Z,*={alaE{1,2,..., n-l} and gcd(a,n) = l}. This set forms a group under

multiplication modulo n, and we have the Jacobi symbol, which generalizes the

Legendre symbol: if n is prime, then the Jacobi and Legendre symbols agree and

we have (a/n) = a(“-‘)“; generally, if p1,p2, . . . ,pk are primes and n =pIp2 “‘pk,
then the Jacobi symbol is (a/n)=(a/p,)(a/p2) ... (a/pk). It turns out, somewhat

surprisingly, that the Jacobi symbol (a/n) is easy to compute. Using Gauss’ law of

quadratic reciprocity, one obtains a fast algorithm which resembles the Euclidean

algorithm and does not require that the prime factorization of n be known.

Solovay and Strassen discovered a way to use the Jacobi symbol to obtain an ex-

ceedingly simple Monte Carlo test for compositeness.

Algorithm 3.3 (Test if a positive integer n is composite).

l Choose a at random from {1,2,...,n-1);

.

Randomized algorithms

if gcd(a, n) # 1 then return composite
else if (a/n) # a(“- ‘V2 (mod n) then report composite.

171

Let us say that a is a witness to the compositeness of n if, when the algorithm

receives n as input and chooses a at random, it determines that n is composite. Then

the effectiveness of the algorithm depends on the abundance of witnesses. If n is

composite, then it is easy to see that the elements a E Z,* that are not witnesses, i.e.,

those that satisfy (a/n) = a(n-1)‘2 (mod n), form a subgroup of Z:. Moreover, it can

be shown that the nonwitnesses form a proper subgroup. Since the order of a

subgroup divides the order of the group, the order of a proper subgroup is at most

half the order of the group. Thus,

Theorem 3.4. If n is composite, then witnesses to its compositeness are abundant.

This Monte Carlo algorithm never gives an unambiguous report that n is prime.

Rather, it keeps looking for witnesses to the compositeness of n, and if n is prime

the algorithm remains perpetually silent. On the other hand, if n is composite, then

the chance that the algorithm would fail to report compositeness within 100 trials

is less than 2-l”. Perhaps in some contexts such a failure to report compositeness

is a sufficiently convincing argument that n is prime, even if it does not provide a

mathematically rigorous proof of the primality of n. So we see again that Monte

Carlo algorithms provide a proof in one direction, but only circumstantial evidence

in the other direction.

Within the past few years, the work of Adleman and Huang [2] and others has

led to a fast Las Vegas algorithm for primality testing. This algorithm uses the

Monte Carlo algorithm for compositeness, together with a rather complicated

Monte Carlo test of primality. The Las Vegas algorithm alternates between running

these two Monte Carlo algorithms. Whether n is prime or composite, one of the two

Monte Carlo algorithms will (with probability 1) eventually produce a witness, thus

determining the status of n; and the expected time to find a witness is polynomial

bounded.

4. Randomized equality testing

4.1. Testing polynomial identities

A very important idea which is often attributed to Schwartz [40] or R. Zippel,

but has been rediscovered many times, is the use of randomized algorithms for

testing polynomial identities.

Here is an example: the formula for computing a Vandermonde determinant. Let

9x2, ***, x, be variables, and let A4 be the n x n matrix whose (i -j)th element is
x(-l. Then the following is an identity: I

det(M) - n (Xi-Xj)=O.
i>j

172 R&l. Karp

If, instead of proving this identity, we just wanted to verify it for the case n = 6, we
might do the following: repeatedly plug in numerical values for the variables, and
evaluate the left-hand side. If we ever obtained a nonzero value, we would be able
to conclude that the identity is false. If we kept getting the value zero, we would
not be able to conclude that the identity is correct, but it seems that our confidence
in its correctness would increase with each evaluation.

In the context of randomized computation, there is some foundation for this
viewpoint, namely

Theorem 4.1. Letf(xl,x2 ,..., x,,) be a multivariate polynomial of degree d. If f is

not identically zero and if values al,a2,..., a,, are drawn independently from the

uniform distribution over (0, f 1, +2, . . . , kd}, then Pr [f (al, a2, . . . , a,) = 01 <i--

This theorem, which can be proved easily by induction on the number of
variables, says that, if the polynomial is not identically zero, then, if we keep choos-
ing independent random samples from a suitably large finite domain and substitute
them for the variables, there is a very tiny chance that the polynomial will repeatedly
take on the value zero. Thus we have an efficient Monte Carlo algorithm for testing
the property that a polynomial is not identically zero. One of the uses of this tech-
nique occurs in graph theory in connection with the problem of determining whether
a given graph has a perfect matching.

4.2. Testing whether a graph has a perfect matching

A perfect matching in a graph is a set of edges which covers each vertex exactly
once. Figure 1 shows two graphs, one which has a perfect matching and another
which does not have a perfect matching.

The following theorem due to Tutte [46] gives a necessary and sufficient deter-
minantal condition for a graph to have a perfect matching.

___ /-.-I
Fig. 1.

Randomized algorithms 173

Theorem 4.2. Let G be a graph with vertex set { 1,2,, . . , n>, and let A = (ati) be the
skew-symmetric n x n matrix defined as follows in terms of the indeterminates
xij : a0 = 0 if i and j are not adjacent; ati =xii if i and j are adjacent and i < j;
aij = -Xji if i and j are adjacent and i > j. Then G has a perfect matching if and only
if det(A) $0.

In view of our discussion of testing polynomial identities, Tutte’s theorem is the

basis of a randomized algorithm for testing whether a graph has a perfect matching.

This was first observed by Lovasz.

Algorithm 4.3 (Testing for the existence of a perfect matching in a graph on n

vertices).

l Form a matrix C by substituting xij = cij in Tutte’s symbolic matrix, where the

cti are independent random variables uniformly distributed over the range

{O, +l, &2, . . . , fn};
l evaluate det(C);

l if det(C)#O then report ‘perfect matching exists”.

Since a numerical determinant can be computed in time O(n3) by Gaussian

elimination, this algorithm is a polynomial-time Monte Carlo algorithm for testing

whether a perfect matching exists. This is of somewhat academic interest, since

Micah and Vazirani [32,47] have given a deterministic algorithm (much more com-

plicated than the randomized algorithm given here) which tests for the existence of

a perfect matching in time O(mfi), where m is the number of edges in the graph;

the Micali-Vazirani algorithm is based on the augmenting path methods initiated

by Berge [6] and Edmonds [18]. However, the above algorithm can also be im-

plemented in parallel within the same resource bounds required for the evaluation

of determinants: time O(log* n) using O@Z~.~) processors. This is noteworthy, since

no deterministic parallel algorithm is known which tests for the existence of a

perfect matching in polylog parallel time using a polynomial-bounded number of

processors.

Instead of merely testing whether a perfect matching exists, suppose we would like

to construct a perfect matching in parallel very rapidly. Is there some single ran-

domized computation that will simultaneously identify all the edges in a perfect

matching? This question was first resolved in [28]. We shall present the remarkably

elegant solution to this problem by Mulmuley, Vazirani and Vazirani [36].

4.3. Fast para(lel algorithm to find a perfect matching

The algorithm is based on the following probabilistic lemma which at first sight

seems very surprising because of its great generality.

Lemma 4.4 (Isolation lemma). Let Sl,S2,S. be distinct subsets of

174 R. M. Karp

S={l,2,..., N}. Let wl, w,, . . . , wN be independent random weights assigned to the
elements of S, drawn from the uniform distribution over (0, +- 1, t-2, . . . , &N}. By the
weight of a subset of S we mean the sum of the weights of its elements. Then, with
probability larger than 3, there is a unique subset of minimum weight.

Proof. Suppose that two subsets, Si and Sj, achieve the minimum weight. Then
there is some element XE S that lies in one of these sets but not in the other. Thus,
the minimum weight among the subsets containing x is equal to the minimum weight
among the subsets not containing x. But the probability of this event is at most
1/(2N+ l), since for each assignment of weights to the elements of S- (x] there is
only one choice of a weight for x that will equate the minimum weight for the
subsets not containing x with the minimum weight for the subsets containing x.
Since x may be chosen in N ways, the probability of having two or more minimum-
weight sets is at most N/(2N+ 1) < 3. 0

In order to apply this result to matchings, let G be a graph on the vertex set

{1,2,..., n} with edge set S. We assign weights to the edges of G, the weights being
independent random variables drawn from the uniform distribution over
{0,+1,+2 ,..., _ +[n2/2] + l}. For the subsets Si we take the sets of edges which are
perfect matchings. Then the Isolation lemma guarantees that, with probability
larger than 4, there is a unique perfect matching of minimum weight.

The observation of Mulmuley, Vazirani and Vazirani is that, when a unique
perfect matching M of minimum weight exists, a simple calculation based on deter-
minants will identify in parallel all the edges of M. This is done as follows:

l Let Wij be the weight of edge i-j;
l from the Tutte matrix, form the numerical matrix B by letting x,=2”‘0;
l in parallel, for all edges {i,j}, perform the following test to determine whether

{i,j} lies in M: Compute

tjj=
det (Bij)2”‘”

22w

where Bti is the &minor of the matrix B. The edge {i,j} lies in M if and only if tij

is an odd integer.
l Check that the edges determined to lie in M form a perfect matching. This

check is necessary because of the possibility that the perfect matching of minimum
weight is not unique.

The key observation is that each nonzero term in the expansion of det(B) cor-
responds to a perfect matching, and is equal to -t22w, where w is the weight of the
corresponding matching. It follows that, if Wis the weight of the unique minimum-
weight perfect matching, then 22w is the highest power of 2 that divides det(B).
Thus the value of W can be determined easy from that of det(B).

The determinant of B and all the minors B, can be calculated in parallel in
O(log2 n) time using a polynomial-bounded number of processors. Thus we have a

Randomized algorithms 175

fast and reasonably efficient randomized parallel algorithm for constructing a

perfect matching in a graph.

5. Testing equality of long strings by fingerprinting

We turn now to an application with a number-theoretic flavor which was first

discussed by the Latvian mathematician Freivalds, who was one of the first to in-

vestigate the power of randomized algorithms. Suppose that two parties, Alice (A)

and Bob (B) can communicate over a reliable but very costly communication chan-

nel. Suppose Alice has a very long string of bits X, Bob has a very long string of

bits y, and they want to determine whether x =y. For example, we can think of Alice

and Bob as having two versions of a manuscript and wanting to determine whether

they are equal. An obvious way for them to test whether x=y would be for Alice

to send x across the channel to Bob; Bob could then compare x with y and let Alice

know whether they are equal. But this brute-force solution would be extremely ex-

pensive, in view of the cost of using the channel. Another possibility would be for

Alice to derive from x a much shorter string that could serve as a “fingerprint” of

x; this short string might be obtained by applying some standard hashing or check

sum technique. Alice could then send this fingerprint to Bob, who could determine

whether the fingerprints of x and y were equal. If the fingerprints were unequal,

then Bob would notify Alice that x#y. If the fingerprints were equal, then Bob

would assume that x=y and so notify Alice. This method requires the transmission

of much less data across the channel, but permits the possibility of a &z/se match,
in which x and y have the same fingerprint even though they are not the same string.

In order to apply this idea Alice and Bob must agree on the fingerprinting func-

tion to be used. For example, they could choose a prime p and then use reduction

modulo p as the fingerprinting function:

H,(x) = H(x) (mod P)

where H(x) is the integer represented by the bit string x. If p is not too large, then

the fingerprint H,(x) can be transmitted as a short string of bits. This leads to the

following algorithm.

Algorithm 5.1 (Testing equality of long strings by fingerprinting-prime p chosen

in advance).

l A sends H,(x);

l B checks if H,(x) =H,(y);

l B confirms that x=y if H,(x) =H,(y) and that x#y otherwise.

The weakness of this method is that, if p is held fixed, then there are certain pairs

of strings x and y on which the method will always fail, no matter how many times

it is repeated. A more advantageous method, which avoids such bad pairs x and y,

176 R.M. Karp

is to determine the prime p by randomization every time the equality of two strings

is to be checked, rather than to agree on p in advance. This leads to the following

algorithm, which is an improvement over the previous one.

Algorithm 5.2 (Testing equality of long strings by fingerprinting-randomized

choice of the prime p).
l A draws p at random from the set of primes less than a certain value M;

l A sends p and H,(x);
l B checks whether H,(x) = H,(y) and confirms the equality or inequality of the

strings x and y.

The advantage of this second method is that if the prime p is chosen from a

suitably large range, then for any strings x and y the probability that the algorithm

will fail is extremely small; moreover, the probability of failure can be reduced even

further by repeating the algorithm with several independent random choices of p.
To make this precise, let n(N) be the number of primes less than N, This function

is a familiar and well-studied object in number theory and it is a fact that rc(N) is

asymptotic to ZWln N. It is also known that, if A <2”, then, except when n is very

small, the number of primes that divide A is less than n(n). Now let us compute the

probability that the second algorithm will fail for two n-bit strings x and y. Failure

can occur only in the case of a false match: i.e., xfy but H,(x) = H,(y). This is

only possible if p divides IH(x) -H(y)/, an integer which is less than 2”. Hence,

Pr [failurel = I {P 1 P < M, P is prime, P divides IH(x) -H(Y) I > I < ~(4
m,f) - 7c(M).

In practice this second algorithm works very well. For example, if the strings x and

y are 100,000 bits long and if Alice uses a fingerprint of at most 32 bits long, then,

by substituting n = 100,000, M= 232 into the above formula, we find that, using

Algorithm 5.2, the probability of a false match is less than 10m4.

5.1. Pattern matching in strings

This is a classical problem in computer science to which fingerprinting can be ap-

plied. The problem is to determine whether or not a certain short pattern occurs in

a long text. Any modern text processing system must provide the capability of per-

forming such searches.

The most naive method for solving this problem is simply to move the short pat-

tern across the entire text, and in every position make a brute-force comparison,

character by character, between the symbols in the pattern and the corresponding

symbols in the text. This is a quadratic method: its worst-case running time is pro-

portional to nm, where n is the length of the pattern and m is the length of the text.

Randomized algorithms 111

More complicated approaches using pointer structures lead to deterministic methods
that run in time O(n+m).

Here we will present a simple and efficient randomized method due to Karp and
Rabin [27]. The method follows the brute-force approach of sliding the pattern
X=x,x,...x, across the text Y=y,yZ... yn, but instead of comparing the pattern
with each block Y(i) = yi yi+ 1.. . yi+n _1 of the text, we will compare the fingerprint
H,(X) of the pattern with the fingerprints Hp(Y(i)) of the blocks of text. These
fingerprints are fortunately easy to compute. The key observation is that when we
shift from one block of text to the next, the fingerprint of the new block Y(i + 1)
can be computed easily from the fingerprint of Y(i) using the following formula:

H,(Y(i+l))=H,(Y(i))+H,(Y(i))-2”y,+yi+.(modp).

Algorithm 5.3 (Pattern matching in strings).
l Choose p at random from (q) 1 sqrm2n, q prime};
l MATCH t FALSE; it 1;

l while MATCH=FALSE and lsism-n+l do

if H,(X) = H,(Y (i))
then MATCH t TRUE
else i+i+l; compute Y(i+l).

Since the updating of the fingerprint requires a fixed number of arithmetic opera-
tions modulo p, the algorithm is essentially a real-time algorithm.

Now we need to analyze the frequency with which this algorithm will fail. A false
match will be reported only if for some i we have X# Y(i) but H,(X) =H,(Y(i)).
This is only possible if p is a divisor of ntiIx, rciJ) IH(X) -H(Y(i))I. This prod-
uct does not exceed 2m”, and hence the number of primes that divide it does not ex-
ceed n(mn). Consequently, the probability of a false match does not exceed
n(mn)/n(m2n)=2/m. By way of a numerical example, if we have a text of length
m = 4000 bits and a pattern of length n = 250 bits, we have m2n = 4 x lo9 ~2~‘. We
can use a 32-bit fingerprint and the probability of a false match will be about 10p3.
So this randomized algorithm is an extremely practical method for performing pat-
tern matching in a simple manner with a very small probability of error.

6. Selection, sorting and searching

We turn now to randomized algorithms in the core computer science areas of
selection, searching and sorting. Many of the basic ideas of randomization were
discovered and applied quite early in the context of these problems. We will see ex-
amples of how random sampling or random partitioning can be used effectively in
algorithm design. Let us start with the classical problem of finding the median of
a set of integers.

178 R.M. Karp

6.1. Finding the median

Let 2 be the nth smallest element of the set X= {x1,x2,x2”_i}. There are fair-

ly complicated linear-time algorithms for finding 2. We will describe a simple

randomized algorithm due to Floyd reported in [30]. It is based on the idea of taking

a random sample of elements of X in order to determine an interval within which

the median is likely to lie, and then discarding the elements that lie outside that inter-

val, thereby reducing the size of the problem.

Using our coin-tossing capability, we pick from X a small random sample X (a

good choice for the sample size is 2n2’3). Within this sample we pick two elements

a and b which are not too far from the median of the sample, but far enough away

that, with high probability, the median of the overall set will lie between a and 6.

Specifically, among the 2n 2’3 elements that were chosen randomly, we pick the

elements whose ranks in the ordering are n2’3 -n1’3 In n and n2’3 + n”3 In n. A

straightforward argument shows that, with high probability, the proportion of

elements from the overall set that lie in the interval [a, b] will be quite similar to the

proportion of elements in the random sample 8 which lie in this interval; specifical-

ly, it will be true with high probability that IXtl [a, b] I< 2n2’3 In n. Secondly, it will

be true with high probability that 2’~ [a, b]. Now the algorithm is quite obvious.

Algorithm 6.1 (Median-finding).

l Draw from X a random sample of size 2n2’3;

l sort X to determine the interval [a, 61;
l compare each element of X with a, and then, if necessary, with 6, to determine

whether the element lies in [a,b]; in this process, keep count of the number of

elements less than a, in order to determine the rank of P in the set Xtl [a, b] (for

simplicity we neglect the extremely unlikely possibility that _jZ does not lie in [a, b]);
l determine 2 by sorting the set Xn [a, b].

The execution time of the algorithm is dominated by the step in which each ele-

ment is compared with a and possibly b. The expected number of elements com-

pared with b is n/2+ o(n), and thus the expected execution time of the entire

algorithm is 3n/2 + o(n). This extremely simple randomized algorithm compares

favorably with the deterministic median-finding algorithms, thus demonstrating in

a simple context the power of random sampling.

6.2. Quicksort with random partitioning

Random partitioning is an important tool for the construction of randomized

divide-and-conquer algorithms. The classic algorithm that uses random partitioning

is a variant of the famous sorting algorithm Quicksort. Quicksort with random par-

titioning can be described very simply. To sort a set of elements X= {x1,x2, . . . ,x,,}

the algorithm proceeds as follows:

Randomized algorithms 179

Algorithm 6.2 (Quicksort with random partitioning).
l Draw an element x* at random from the set X; call x* the splitter;
l compare each element with x*, thus partitioning the remaining elements into

two sets: SMALL=(xeX(x<x*) and LARGE={xEX(~*<X);
l recursively, sort the sets SMALL and LARGE.

Of course, what is desired is a splitter that will divide X into two sets of approx-
imately equal size. Although the random choice of a splitter does not guarantee such
a division, it can be shown, using a straightforward analysis based on a recurrence
relation, that the expected execution time of Quicksort when all splitters are chosen
at random is 2n Inn + O(n). This performance compares fairly well with the stan-
dard information-theoretic lower bound n log, n for the number of comparisons
needed to sort n items.

6.3. Binary search trees

Similar ideas can be applied to problems concerning data structures. One of the
most basic data structures is a dictionary. A dictionary is intended to include items
from a linearly ordered set such as the integers or the words over an alphabet, and
to support the operations of accessing, inserting or deleting an element. Often fur-
ther operations are supported, such as joining two dictionaries together, splitting a
dictionary in certain ways or finding the least element greater than a given element x.

One of the most common ways of maintaining a dictionary is through the use of
a binary search tree. This is a binary tree whose internal nodes correspond to the
items in the dictionary. It is based on the ordering principle that, at each node, the
items in the left subtree precede, and the items in the right subtree follow, the item
at the node. This ordering principle enables the search for an item or the insertion
of an item to be accomplished by following a single path through the tree, starting
at the root; the operation of deletion is only slightly more complicated.

There is an interesting parallel between the randomized quicksort algorithm
described above and the behavior of binary search trees if the items are inserted in
a random order. It can be shown quite easily that the number of comparisons need-
ed in the randomized quicksort algorithm has the same probability distribution as
the number of comparisons needed to insert n items into an initially empty binary
search tree in random order. The reason for this is that we can view a binary search
tree in two ways: as a tree resulting from insertions or as a depiction of the suc-
cessive splittings used in Quicksort. This dual interpretation of binary search trees
allows the transfer of the analysis of randomized Quicksort to yield the result that
the expected insertion time or the expected time to access a random item is
logarithmic if the items are inserted in random order.

Since we cannot assume that the insertions are made in random order, there is
a real possibility that a binary search tree may perform in a catastrophic manner.
The worst case occurs when the sequence of insertions produces a “linear” tree, in

180 R.M. Karp

Fig. 2. Binary search tree, heap and treap.

which all the items lie along a single long path. In this case, the insertion and access

times are linear in n, rather than logarithmic. There are various standard ways to

restructure binary search trees in the process of performing operations on them so

as to guarantee that all of the execution times are logarithmic. In particular, AVL

trees [l] and splay trees [44] achieve this effect.

Here we will describe a very recent randomized approach to the maintenance of

binary search trees using a new data structure due to Aragon and Seidel [4]. The

structure is called a treap because it combines the ideas of binary search tree and

heap. A heap is a binary tree with the following ordering principle: along any root-

to-leaf path, the values of the items increase; thus, the value of any parent is less

than the values of its children and, in particular, the smallest element appears at the

root.

A treap is a binary tree in which each item x has two associated values, x. key

and x . priority, and which is simultaneously a binary search tree with respect to the

key values and a heap with respect to the priority values (see Fig. 2). Given n items

with associated key and priority values, it is easy to show that there is a unique tree

structure for the corresponding treap, namely the tree structure obtained by inser-

ting the keys in increasing order of priorities.

The algorithms for maintaining a treap are slightly complicated, because, in order

to maintain the binary search tree property and the heap property simultaneously,

a certain amount of local restructuring is sometimes necessary. For example, the in-

sertion of item (D,28) in the treap of Fig. 3(a) results in the tree shown in Fig. 3(b),

which fails to be a heap with respect to the priority values. This requires a local rota-

tion, and the treap properties are reestablished in Fig. 3(c).

Aragon and Seidel give a clever application of the concept of treap to the problem

of maintaining binary search trees. The idea is to use a binary search tree to main-

tain a dictionary, but to use randomization in the following way: when an item is

inserted, we draw a value from a continuous probabihty distribution and assign it

to the item as its priority. This number provides a “random time stamp” for the

item, and we require that the tree be a heap with respect to the random priorities.

This has an interesting effect which facilitates the analysis of the expected time to

Randomized algorithms 181

(a) (b)

Fig. 3. Three binary trees.

Cc)

perform data structure operations. We have mentioned that for a given set of items

having keys and priorities, there is a unique treap containing them. Suppose that

we have performed a long sequence of insertions, deletions and accesses. A snapshot

of the treap structure at any one time is independent of any items that were inserted

and later deleted and is uniquely determined by the two fields of the items currently

present in the treap. Therefore, the snapshot at any point in time is exactly the tree

that would have been obtained if those items had been inserted into an initially emp-

ty binary search tree in the order determined by their time-stamp priorities. Since

the time stamps are completely independent and random, this means that at any

fixed moment what we have statistically is a binary search tree obtained by random

insertions. Thus, although the insertions were not performed in random order, the

assignment of random priorities achieves an equivalent effect and we can apply the

results regarding randomized Quicksort. To complete the analysis, it is also

necessary to consider the cost of the rotations required to maintain the treap proper-

ty; fortunately, Aragon and Seidel have shown that the expected number of rota-

tions per insertion or deletion is less than 2. Thus, for a tree of size N occurring at

any point in the history of a treap, the expected time for the next access, insertion

or deletion is O(log N). Thus the approach based on random priorities is an elegant

and efficient way to maintain binary search trees.

7. Computational geometry

About fifteen years ago computational geometry emerged as an important new

area within the study of algorithms and their complexity. Since computational

geometry deals in large part with data structures containing items with several keys

(where each key typically corresponds to a coordinate in a d-dimensional Euclidean

space) it is natural that many of the ideas developed in the context of sorting and

searching carry over to computational geometry, where some of the combinatorial

flavor is replaced by a geometric point of view. In particular, there has recently been

high interest in randomized algorithms in computational geometry, and very

182 R.M. Karp

Fig. 4. A trapezoidal diagram.

beautiful and practical results have been obtained. We will describe some of these
results.

7.1. Finding the planar partition determined by a set of line segments

Suppose we are given a collection of line segments within a two-dimensional box.
The planar partition associated with these segments is obtained by running, from
each endpoint of a segment, and from each point where two segments intersect, a
vertical line that continues, both upward and downward, until it intersects the boun-
dary of the box or another segment. The result is a dissection of the box into
trapezoids, and thus the planar partition is sometimes called the trapezoidal diagram
associated with the set of line segments. Figure 4 shows the trapezoidal diagram
associated with a set of four line segments.

The problem of computing an explicit description of the trapezoidal diagram
associated with a set of line segments is a classical one in computational geometry.
The problem requires in particular the determination of all intersections of the given
segments. Mulmuley [33] found a fast randomized algorithm for constructing the
trapezoidal diagram. His algorithm is based on the introduction of randomization
into a naive deterministic algorithm for the problem, and he proved that, through
the use of randomization, the algorithm achieves a very favorable expected running
time. The algorithm starts with no segments, and with a vertical line, extending from
the top to the bottom of the bounding box, through each endpoint of the desired
segments. It then adds segments, one at a time, in random order, updating the
trapezoidal diagram after the addition of each segment. Each time a segment is
added, the algorithm must trace along the length of that segment to find the vertical
lines that insersect it and contract those vertical lines appropriately. It must also find
any new segment intersections and create appropriate new vertical lines.

Figure 5 illustrates the process. It shows the diagram at the stage when the dotted

Randomized algorithms 183

Fig. 5. Step in the construction of a trapezoidal diagram.

line segment is added. The segment is traced and, starting at its right endpoint, the

algorithm encounters a vertical line whose upper part will have to be deleted from

the structure, and two successive intersections with other segments through which

new vertical lines must be added.

Mulmuley’s insight is that if the segments are added in random order, then the

solution tends to be obtained very rapidly. If the number of segments is n and the

number of intersections is m, then the expected time to execute this algorithm is

O(m + n log n). As usual, the expectation is over the random choices made by the

algorithm, and the bound on expected time is valid for every instance of the prob-

lem. This bound matches the performance of the best deterministic algorithm for

this problem [lo], even though the deterministic algorithm is much more com-

plicated .
In measuring the work performed by Mulmuley’s algorithm, it is necessary to

specify in some detail the data structures that will be maintained and to determine

the expected contribution of various operations to the expected running time. For

simplicity, we will concentrate on just one part of the analysis, the determination

of the expected number of contractions of vertical segments. Consider an endpoint

q and a vertical ray upward from q. Let Uq be the number of times this ray gets

contracted. Note that Uq is a random variable, since it depends on the order in

which the segments are added. If there are t segments crossing this ray, then the

number of contractions may be as large as t if the segments are added in an unfor-

tunate order. However, a segment L causes the line to be contracted only if L’s in-

tersection with the ray is lower than that of any segment processed before L. Thus,

if L’s intersection with the ray is the kth lowest, then the probability that L causes

a contraction is l/k. It follows that the expected number of contractions is

E[U,] =,c, +-In t.

184 R. A4. Karp

7.2. Linear programming with a fixed number of variables

This is another elegant example of the use of randomization in computational

geometry. It is due to Clarkson [12]. The linear programming problem is, of course,

to minimize a linear objective function c. x subject to a system of linear inequalities

Ax< b. The data of the problem consists of the d-dimensional vector c, the n-

dimensional vector b and the n x d matrix A. The solution is a d-dimensional vector

X.

Clarkson’s randomized method is effective when d, the number of variables, is

very small compared to n, the number of constraints. It exploits the basic fact that

the optimal solution to a d-dimensional linear programming problem is determined

by d of its n constraints; if the other n -d constraints were deleted from the prob-

lem, the optimal solution would be unchanged. Clarkson’s idea is to use random

sampling to avoid considering irrelevant constraints.

Let S be the set of constraints of the problem. Let Tbe a subset of S and let x*(T)

be the solution which is optimal when we consider only the constraints in T (for ease

of exposition we ignore the possibility that a subset of constraints may fail to have

a bounded optimal solution). As the algorithm proceeds, it accrues a set I/* of con-

straints that will be enforced at all times. The goal of the algorithm is to keep this

set small while capturing all d of the constraints that determine the optimal solution

of the problem.

Algorithm 7.1 (Linear programming with a fixed number of variables).

l (Initialization) V* +- @;
l Repeat

- Choose at random a set R c S of d$ constraints (recall that n is much larger

than d);
- solve, for example by the simplex method, the linear program with (small)

constraint set I/* U R, obtaining a solution x*(V* U R);
- x*+-x*(I’*U R);
- inspect all constraints and determine the set I/of constraints that are violated

by x*;
- if V= @ then return x* and halt (all constraints are satisfied, and the answer

to the problem is reported);

- if]1/152fithen I/* t I/* U I/ (the small set of currently violated constraints

is added to the set of enforced constraints and the computation continues).

Let us examine the performance of this algorithm. The optimal solution of the

problem is determined by some set S* of d constraints. The algorithm will succeed

as soon as S* is captured in the set of enforced constraints. Each time we solve a

linear program with some set of constraints and find that F’, the set of violated con-

straints, is nonempty, at least one constraint from S* is among the violated ones.

Randomized algorithms 185

Thus, when we add Vto the set of enforced constraints, we capture at least one con-

straint from S*. It follows that the set of enforced constraints will be augmented

at most d times. Also, the size of the set of enforced constraints does not grow too

large, since we add only 2fi constraints at a time. However, at each iteration in

which there are more than 2fi violated constraints the algorithm fails to augment

the set of enforced constraints, and thus fails to make progress. The crux of the

analysis of the algorithm is to show that such useless iterations will not be too fre-

quent. A probabilistic argument shows that, at each iteration, the probability that

the number of violated constraints will exceed 2fi is less than +. It follows that the

expected number of iterations is less than 2d. At each iteration a linear program with

at most 3dfi constraints gets solved. It follows that the expected execution time of

the entire algorithm is

lgd+2
o(@+o(i) 1.

If we think of d as fixed and n as growing, then the dominant term is O(d2n). No
deterministic algorithm for solving linear programs in a fixed number of dimensions

is known to achieve as good a time bound.

The idea of using random sampling, random partitioning and random ordering

in computational geometry has led to a large number of elegant and efficient ran-

domized geometric algorithms. Among these are eminently practical algorithms for

hidden surface removal, for the computation of convex hulls in three dimensions,

and for the dual problem of computing the intersections of a set of hyperplanes

[l l-14,34,35,41].

8. Combinatorial enumeration problems

With every nondeterministic polynomial-time Turing machine M one may

associate both a decision problem and an enumeration problem. The decision prob-

lem is to determine whether A4, on a given input x, has an accepting computation.

The enumeration problem is to determine the number of accepting computations of

machine A4 on input x. The class of decision problems associated with nondeter-

ministic polynomial-time Turing machines is called NP, and the class of enumera-

tion problems associated with such machines is called #P. Thus, each problem in

#P can be viewed as counting the witnesses to instances of a problem in NP.

Typical problems in # P include counting the perfect matchings, Hamiltonian cir-

cuits or spanning trees of a graph, counting the total orders compatible with a given

partial order, and counting the truth-value assignments satisfying a propositional

formula. Spanning trees can be counted in polynomial time, since the Kirchhoff

Matrix-Tree Theorem tells us that the number of spanning trees is given by the deter-

minant of a certain integer matrix associated with the given graph. The other pro-

blems appear to be much harder. In fact, the problems of counting perfect

186 R. M. Karp

matchings, Hamiltonian circuits, compatible total orders, and satisfying assign-
ments are #P-complete; this means that every problem in #P is polynomial-time
reducible to each of the three. Thus, if any one of the three problems were solvable
in polynomial time, then every problem in #P would be solvable in polynomial
time; this is very unlikely to be true.

Recently there has been a wave of interest in polynomial-time randomized
algorithms for the approximate solution of problems in #P. We will discuss some
of the results that have been obtained.

8.1. Randomized approximation algorithms for combinatorial enumeration
problems

The set-up is as follows: Let Z denote an instance of a problem, and let COUNT(Z)
denote the number of solutions for instance I. For example, if the problem were to
count perfect matchings, then Z would be a graph and COUNT(Z) would be the
number of perfect matchings in that graph. Let A(Z) be the estimate of COUNT(Z)
produced by the randomized approximation algorithm I. For fixed positive con-
stants E and 6, algorithm A is called an &,&approximation algorithm if, for every
instance Z, the probability that the relative error exceeds E is less than 6; i.e.,

ICOUN’UO-W)1 >E

COUNT(Z)

Thus, E can be viewed as an accuracy parameter and 6 as a confidence parameter.
Often, we are interested in a family {AJ} of related approximation algorithms
where, for all E > 0 and 6 > 0, AC,8 is an E, d-approximation algorithm. Such a fami-
ly of approximation algorithms is called a polynomial-time approximation scheme
if, for all E and 6, the execution time of AE,6 is bounded by a polynomial in n (the
size of the instance), e-l and ln(6-‘). The logarithmic dependence on 6-l is natural
for the following reason: suppose we can achieve the desired performance for all
E when 6 = $; this means that every time we run the algorithm there is at most a 25%
chance that our relative error will exceed E. Now suppose we want to achieve a
higher level of confidence, corresponding to a smaller value of 6. We can repeatedly
run the algorithm that has a 25% chance of making a relative error larger than E
and then take, as our estimate of COUNT(Z), the median of the estimates produced
in the individual runs. A straightforward probabilistic calculation shows that the
number of iterations of the algorithm that works for a confidence level of: necessary
for achieving a given confidence level 6 grows as ln(6-‘). Thus, for theoretical pur-
poses, we may fix 6 at +.

8.1.1. Estimating the cardinality of a union of sets
The problem of finding the cardinality of a union of sets is a classical com-

binatorial problem whose classical solution is given by the principle of inclusion and
exclusion:

187

(SIUSzU.**US,(= C ISi(- C ls,ns,i+r<~<k(~jn~jnSk(-....
i iij

When t is large the direct evaluation of the inclusion-exclusion sum is not practical
since the number of terms is 2’- 1. Furthermore, even though the inclusion-
exclusion sum is bracketed between any two consecutive partial sums, the partial
sums behave rather erratically and do not furnish a good approximation to the
inclusion-exclusion sum.

Instead, let us consider a randomized method which produces an estimate of the
cardinality of a union of sets. This method requires three assumptions: that we
should be able to determine easily the cardinality of each set Si, that we should be
able to draw an element at random from the uniform distribution over any one of
the sets, and that we should be able to test whether a given element lies in a given
set. We will shortly see a concrete example where these conditions are fulfilled.

We will define the coverage of an element x as the number of sets that contain
x: cov(x) = 1 {i 1 x E Si} 1. The algorithm produces an estimator X of the cardinality
of U Si using a two-stage sampling process:

Algorithm 8.1 [25] (Estimating the cardinality of a union of sets).
l Draw a set at random from the distribution in which the probability of drawing

S; is proportional to its cardinality; i.e., Pr[&] = ISil/‘cf=i [Sjl;
l having drawn Si, choose a random element x from Si;
l by testing the membership of x in each Sj, determine cov(x);
’ Xt cf=i lSil/COV(X).

It is a simple exercise to show that X is an unbiased estimator of the cardin-
ality of the union of sets: i.e., E[X] = IU &I. This suggests that we might es-
timate lUSil by taking the average of N samples of the estimator X Y=
(xi+x2+“’ +X,)/N. We require that Pr[((Y(- (USi()/(USi(>E]<~. A routine
calculation involving bounds on the tails of the binomial distribution shows that a
sample size sufficient for this purpose is N= t ln(2/6)4.5/&‘.

There are a number of concrete problems which can be expressed as computing
the cardinality (or probability, or measure, or volume) of a union of sets, and are
amenable to this approach. A number of these applications are in reliability theory,
but the simplest example is estimating the number of truth assignments satisfying
a Boolean formula in disjunctive normal form (DNF). In this case Si is the set of
truth assignments satisfying the ith term in the DNF formula. For example, if the
formula is ~~x,~~Vn,x,Vx,x,~~V..., then Si consists of all truth assignments in
which x1 is true, x2 is true and x3 is false. It is clear that the three assumptions re-
quired by the method are satisfied, and thus we get a polynomial-time approxima-
tion scheme for estimating the number of truth assignments satisfying a DNF
Boolean formula. Even though the method is simple, this result is of interest because
the problem of exactly counting the truth assignments satisfying a DNF formula is
#P-complete. Note, however, that it is critical for the formula to be in disjunctive

188 R. M. Karp

normal form; a moment’s thought shows that, unless P=NP, there cannot exist a

polynomial-time approximation scheme for the problem of counting the truth

assignments satisfying a Boolean formula in conjunctive normal form.

8.1.2. Estimating the permanent of a O-I matrix
Another classical problem related to combinatorial enumeration is the computa-

tion of the permanent of a n x n matrix A = (au). The permanent of A is defined as

per(A) = C al,(r). a2a(2). a** . anocn).
aes,

The problem of computing the permanent of a n x n O-l matrix is equivalent to the

#P-complete problem of counting the perfect matchings in a (simple) bipartite

graph with n vertices in each part.

Although the definition of the permanent resembles that of the determinant, the

permanent seems to be much harder to evaluate; the best deterministic algorithm

known is Ryser’s algorithm [39] based on inclusion-exclusion, which runs in time

o(n2”). Many people have remarked that, since the determinant is easy to compute

and has a definition resembling that of the permanent, there might be some way to

use the ease of computing the determinant in a strategy for computing the perma-

nent. We present here a randomized algorithm which exploits the following relation

between permanent and determinant due to Godsil and Gutman:

Given a O-l matrix A, let B be the random matrix (&au), where the
plus and minus signs are chosen independently at random. Then
E[det2(B)] = per(A).

This suggests a Monte Carlo method in which one estimates per(A) as the mean of

n independent samples, each of which is obtained by choosing random plus and

minus signs to derive from A a random matrix B, and then computing det2(B).

This method will perform quite poorly on certain examples. For example, if A has

2 x 2 blocks of l’s on the main diagonal and O’s elsewhere, then the determinant of

B will be zero whenever one of the 2 x 2 diagonal blocks has determinant zero. Each

of the n/2 diagonal blocks independently has a 50% chance of having a zero deter-

minant. Thus, Pr[det2(B) # 0] = 2-n’2. Therefore, a sample size around 2”‘2 will be

needed in order to have a reasonable chance of ever observing a nonzero determi-

nant. Still, an analysis based on estimating the variance of det2(B) and applying

Chebyshev’s inequality yields the following result, showing that the randomized

method has some advantages in comparison with Ryser’s deterministic algorithm,

if one is willing to approximate the permanent rather than compute it exactly.

Theorem 8.2 [24]. The number of trials needed for an ~,&approximation of the
permanent of an n x n O-l matrix is less than C3n’2~-1 ln(&‘), where C is a
constant.

Randomized algorithms 189

The following refinement of the method reduces the variance of the estimator. In-

stead of multiplying the entries of A randomly by + 1 and - 1, use cube roots of uni-

ty: replace each entry aij independently and randomly by either aij, waij or o*aij,

where o is a principal cube root of 1. Let the resulting random complex matrix be

C. Then E[det(C) det(C)] =per(A), where z denotes the complex conjugate of the

complex number z. Thus we can estimate per(A) by the mean of a number of

samples, each of which is obtained by constructing from A the random complex

matrix C, and then computing det(C) det(C).

Theorem 8.3 [24]. The number of trials neededfor an E, &approximation to theper-
manent of an n xn O-l matrix is less than C2n’2~P1 ln(6-‘).

Although this Monte Carlo algorithm is an improvement over the best deter-

ministic algorithm for computing the permanent of a O-l matrix, it requires ex-

ponential time. What is really wanted is a polynomial-time approximation scheme

for the problem. This has not been achieved, but there exists a mathematically in-

teresting approach which yields such an approximation scheme in certain special

cases. In preparation for presenting this approach, we need to discuss random walks

on multigraphs.

8.1.3. Random walk on a regular multigraph of degree d
We consider a random walk on a finite N-vertex multigraph which is regular of

degree d. Loops and multiple edges are allowed; each loop at a vertex contributes

1 to its degree. The random walk associated with such a multigraph is defined as

follows: when a vertex Di is reached, the walk continues along a randomly chosen

edge incident to Ui. This random walk determines a Markov chain whose states are

the vertices of the graph. If there are a edges between Ui and Vj, then the transition

probability associated with a transition from Ui to Uj is given by Pij = a/d. In such

a Markov chain, all states have the same stationary probability l/N.

We shall be interested in how rapidly the Markov chain associated with a regular

multigraph approaches its stationary distribution. Let p!) be the probability that

the state at time t isj, given that the state at time 0 is i. As a measure of how rapidly

the Markov chain mixes, we introduce the quantity A(t) = max;,j [#/(l/N)]; this is

a measure, in relative terms, of how close the distribution of states after t steps

comes to the stationary distribution, when nothing is assumed about the initial state.

A chain is said to be rapidly mixing if A(t) converges rapidly to 1. If a chain is rapid-

ly mixing, then one can start in an arbitrary initial state and reach a nearly uniform

distribution over the states after a small number of transitions.

We shall require sufficient conditions for a chain to be rapidly mixing. Jerrum

and Sinclair [23] introduce the concept of the conductance of a Markov chain; the

conductance of a chain (in the special case where the stationary distribution is

uniform) is defined as the minimum, over all sets S of states containing at most half

the states of the entire chain, of the conditional probability of escaping from S at

190 R.M. Karp

the next step, given that the present state is uniformly distributed over S. Thus, the
conductance is

where S ranges over all state sets of cardinality at most n/2.
If a chain has high conductance, then it will not tend to get trapped in small sets

of states, and it will be rapidly mixing. Specifically, we obtain the following result
due to Jerrum and Sinclair [23].

Theorem 8.4. ~I(t)lN(l- G2/2)‘.

Jerrum and Sinclair [23] discovered the following useful technique for bounding
the conductance of a Markov chain with uniform stationary distribution.

Theorem 8.5. Suppose that one can specify, for each two-element set {i, j} of states,
a canonical simple path between i and j, such that no oriented edge appears in more
than bN canonical simple paths. Then @? 1/(2bd).

The application of random walks on multigraphs to combinatorial enumeration
goes as follows. As a step towards approximately counting some set S of com-
binatorial objects, one often wishes to sample almost uniformly from some
associated set T of combinatorial objects. To sample from T, one can set up a ran-
dom walk on a regular multigraph with vertex set r; if the random walk is rapidly
mixing, then the sampling problem can be solved by simulating the walk from an
arbitrary initial state for a small number of steps, and then observing the state,
which will be nearly uniformly distributed over T.

In the following sections we describe a very interesting application of the random
walk method to the problem of estimating the number of perfect matchings in a
bipartite graph. The approach was initiated by Broder [9] and the first rigorous
proof of its efficiency in particular cases was given by Jerrum and Sinclair [23] using
the theorems about conductance given above.

X1.4. Estimating the number of perfect matchings in a bipartite graph
Given a bipartite graph with m edges and n vertices in each part, let Mk denote

the number of matchings of size k. We are interested in estimating M,,, the number
of perfect matchings. If all the ratios Mk/Mk_, , k = 2,3, . . . , n were known, then M,,
would be determined since i’V, is clearly equal to m. Broder’s idea is to obtain suf-
ficiently good estimates of these ratios that, by multiplying them together, we obtain
a good estimate of M,/M, . Each ratio Mk/Mk_ 1 can be estimated statistically by
drawing a suitably large number of independent random samples from the uniform
distribution (or from a nearly uniform distribution) over the set Mk U Mk_r, and

Randomized algorithms 191

for this purpose one defines a random walk on a regular multigraph with vertex set
M,UMk_r. We illustrate the approach by defining a random walk over
IV,, UM,_t, the set of perfect and “near-perfect” matchings in the graph.

In this case the state set is Ivan U M,, _ 1 and there are m equally probable transi-
tions out of each state, corresponding to the m edges of the graph. To complete the
description, we need to describe the transition corresponding to edge e when the
state is M. There are five cases:

l If A4 is a perfect matching and e@M, then the new state is M;
l if A4 is a perfect matching and e EM, then the new state is M- {e>;
l if Mis not a perfect matching and e is not incident with any vertex in M, then

the new state is MU {e>;
l if A4 is not a perfect matching and e is incident with exactly one vertex covered

by A4, then there is a unique edge f E A4 such that MU e-f is a matching, and the
new state is MU e-f;

l if A4 is not a perfect matching and e is incident with two vertices covered by
A4, then the new matching is M.

This Markov chain corresponds to a random walk on a regular undirected graph
of degree m with vertex set A4,, U A4,, _ 1. Jerrum and Sinclair [23] prove that, if the
underlying n-vertex graph within which we are trying to count perfect matchings is
dense, meaning that all degrees are greater than n/2, then the conductance of the
Markov chain is at least l/(12&. This establishes that one can sample from a
distribution over A4,, U A4, _ 1 which is exponentially close to the uniform distribu-
tion by simulating a polynomial-bounded number of steps of this Markov chain.
Similar results hold for similarly defined Markov chains on A4k U Mk-1, for
k = 2,3, . . . , n - 1. It follows that, in the case of dense bipartite graphs, there is a
polynomial-time randomized approximation scheme for the problem of counting
perfect matchings. The paper [16] extends this result to a broader class of bipartite
graphs. However, it remains an open question whether there exists a polynomial-
time randomized approximation scheme for the problem of counting perfect match-
ings in an arbitrary bipartite graph.

8.1.5. Estimating the volume of a convex body
The idea of applying rapidly mixing Markov chains to combinatorial enumeration

problems has been extremely influential, and has stimulated a great deal of research.
One of the most striking recent results in this direction is due to Dyer, Frieze and
Kannan [17], who gave a polynomial-time randomized approximation scheme for
the problem of computing the volume of a convex body L. The principal input to
the algorithm of Dyer, Frieze and Kannan is a membership oracle; i.e., a black box
that will answer any query of the form “Does point x lie in L?“. For technical
reasons, two additional input items are required: a ball of positive volume contained
in L and a ball containing L.

We shall not do more than sketch the approach taken by Dyer, Frieze and Kan-
nan. The first step is to give a reduction showing that the problem of estimating the

192 R. M. Karp

volume of L is polynomial-time reducible to the following problem: given a

membership oracle for a convex body K, draw a point x from a “nearly uniform”

distribution over K. In order to sample from K, they approximate K by a very slight-

ly larger convex body which can be described as the union of a large number of con-

gruent n-dimensional hypercubes. They then introduce a random walk on a regular

graph of degree 2n whose vertices are the hypercubes. The edges of this graph inci-

dent with a given hypercube Hare in one-to-one correspondence with the 2n (n - l)-

dimensional facets of H. For a given facet F of H the transition is as follows: If

H shares the facet F with another hypercube H’, then the transition is to H’, else

the walk remains at H.
Let @ be the conductance of this random walk. Using isoperimetric inequalities

relating the volume and the surface area of smooth manifolds, it is possible to show

that the reciprocal of @ is bounded above by a polynomial in n. Hence the walk is

rapidly mixing.

The existence of a polynomial-time randomized approximation scheme for the

problem of computing the volume is surprising for several reasons:

l The problem of computing the volume exactly is #P-complete.

l According to a result in [S], any deterministic algorithm based on membership

queries requires a number of queries exponential in n in order to guarantee an ap-

proximation to the volume with bounded relative error; thus randomization is essen-

tial for the result.

l The result implies a polynomial-time randomized approximation scheme for

the seemingly difficult problem of computing the number of linear orderings com-

patible with a given partial ordering.

9. Randomization in parallel and distributed computation

In this section we briefly indicate some of the uses of randomization in parallel

and distributed computing.

9. I. Dynamic task scheduling

The design of efficient parallel algorithms often entails decomposing a computa-

tion into smaller tasks and scheduling the execution of these tasks on individual pro-

cessors. An ideal scheduling algorithm is one which keeps all the processors busy

executing essential tasks, and minimizes the interprocessor communication required

to determine the schedule and pass data between tasks. The scheduling problem is

particularly challenging when the tasks are generated dynamically and unpredictably

in the course of executing the algorithm. This is the case with many recursive divide-

and-conquer algorithms, including backtrack search, game tree search and branch-

and-bound computation.

Karp and Zhang [29,50] have shown that randomization is a powerful tool for

Randomized algorithms 193

solving dynamic task scheduling problems. We illustrate the approach with a simple

model problem related to parallel backtrack search. In this case the set of tasks is

a rooted binary tree whose shape is initially unknown to the parallel algorithm. In-

itially, only the root of the tree is given. The primitive unit-time computational step

is called node expansion. The step of expanding a node x either determines that x

is a leaf of the rooted tree or else creates the children of x. The goal is to expand

every node of the tree, using p processors. In order to balance the workloads of the

processors, it will also be necessary for nodes to be sent from one processor to

another, and we assume that it takes one unit of time for a processor to send or

receive a node.

If the tree contains n nodes, then n/p is clearly a lower bound on the time of any

parallel algorithm with p processors. Also, if the maximum number of nodes on a

root-leaf path is h, then h is a lower bound, since the tasks along a path must be

executed sequentially. Thus, a randomized parallel algorithm that, with high prob-

ability, executes all tasks within time 0(&p + h) may be considered optimal. Karp

and Zhang have given an optimal algorithm which has the additional nice property

that it is completely decentralized and requires no global control or global data

structures. At any point in the execution of this algorithm, each node that has been

created but not yet executed is assigned to a processor. A processor is called idle if

no nodes are assigned to it, and backlogged if more than one node is assigned to

it. Each step consists of three parts: first, each idle processor requests data from a

randomly chosen processor; then, each backlogged processor which has received a

request chooses a random requesting processor and donates its rightmost task (with

respect to the left-to-right ordering implicit in the rooted tree); finally, each pro-

cessor that is not idle executes one of its tasks. It can be proved that, with high pro-

bability, this simple randomized scheme yields an execution time bounded by a

constant times the lower bound of max(n/p,h).

9.2. Symmetry breaking in distributed computation

Randomized algorithms have found many useful and elegant applications in the

area of protocols for distributed systems. In distributed systems there are a large

number of processes executing concurrently and asynchronously, each with only in-

complete knowledge of what the other processes are doing. Many of the problems

revolve around symmetry breaking; that is, the use of randomization to make a

choice between two or more alternatives that look identical.

We will use a metaphor to describe one typical example of a distributed system

problem that can be attacked using randomization. Suppose that a tour group is to

gather at one of the two entrances to a railroad station. However, the station is so

free of landmarks that there is no canonical way to distinguish between the two en-

trances: they cannot be referred to as “the entrance by the newsstand” or “the

north entrance”. However, near each entrance is a small bulletin board on which

messages can be left. How can the tourists arrange to convene at a common en-

194 R.M. Karp

trance, when they may only communicate via the bulletin boards? This problem is
called the choice coordination problem.

The problem arises in computer systems in various ways, for example, when a
large group of users must reach agreement on which of two versions of a distributed
data structure to use, even though they have no agreed-upon way of naming the two
versions or distinguishing one from the other.

Rabin [38] has given an elegant and efficient randomized solution to this problem.
The problem is defined abstractly as follows. There are n indistinguishable processes
that must coordinate their choices. All processes are to execute the same algorithm.
The computation is asynchronous; thus, at any point in the computation, any pro-
cess that is ready to execute a step may be the next one to do so. There are two
memory cells (corresponding to the bulletin boards associated with the two en-
trances to the station). The algorithm executed by each process consists of a se-
quence of indivisible actions. An indivisible action has two parts: reading one of the
two memory cells and (optionally) writing a value back into the same cell. When
the computation terminates, exactly one of the two memory cells is to contain the
special value 0 ; the result of the choice coordination process is the selection of the
cell that ultimately contains q .

In Rabin’s randomized protocol the contents of a cell is either the special symbol
q or an ordered pair [n, b], where n is a nonnegative integer and b is either 0 or
1. Initially, each cell contains the ordered pair [0, 01. Each process executes the
following brief but intricate algorithm, in which the variable m denotes a positive
integer and r and t denote binary digits.

l m+O; rcrandom bit; t+O
l repeat the following primitive action forever

l r t 1 - r; x + contents of cell r
- Case 1: x=0: halt;
- Case 2: x= [n, b]

(a) m<n or (m=n and t<b): [m,t]+[n,b];
(b) [m, f] = [n, b]: [m, t] + contents of cell Y+- [m + 1, random bit];
(c) m>n or (m=n and t>b): contents of cell rt 0; halt.

The reader is invited to prove that Rabin’s protocol is correct, and that the follow-
ing is true for every positive integer k: the probability that some process will execute
more than k primitive actions before the protocol halts is not greater than 2-k.
Since the protocol is correct and tends to terminate rapidly, it constitutes a highly
effective randomized solution to the choice coordination problem.

10. Interactive proofs

During the past few years complexity theorists have been intensely investigating
a radical new concept of mathematical proof. In an interactive proof one

Randomized algorithms 195

demonstrates that a statement is true not by deriving it within a formal system of
axioms and rules of inference, but by performing some feat that would not be pos-
sible unless the statement were true. The concept of interactive proof was first de-
fined in [20].

An interactive proof is a dialogue conducted by two randomized algorithms, the
prover P and the verifier V. The dialogue begins when both P and V receive the in-
put x, and the object of the dialogue is to enable V to decide whether x has a certain
property 17. In the course of conducting the protocol the two parties send messages
back and forth. It is required that the total length of these messages be bounded by
a polynomial in the length of the input x. It is also required that V be a polynomial-
time randomized algorithm; P, on the other hand, is allowed to have unlimited com-
putational power. The dialogue always ends with a decision by V as to whether x
lies in L. Informally, the role of P is to persuade V that x has property Z7, and the
role of V is to put questions to P that P will be able to answer in a satisfactory way
if and only if x actually does have property 17.

In order for the pair P, V to qualify as an interactive proof of membership in L,
the following two properties must be satisfied:

l completeness: if x has property 17, then, with high probability, the dialogue be-
tween P and V will end in the acceptance of x;

l soundness: if x does not have property 17, then, even if P is replaced by some
other randomized algorithm P* (i.e., even if the prover cheats), the probability that
the dialogue will end in acceptance of x is very small.

It is clear that every problem in NP has an extremely simple interactive proof in
which both the prover and the verifier are deterministic. In the case where the input
x has property 17, P simply sends a witness to this fact, and V verifies the validity
of the witness. The ability of P and V to randomize, combined with the possibility
of a multi-stage dialogue, permits the construction of interactive protocols for prob-
lems that appear not to lie in NP. In fact, Shamir [42] has shown that the collection
of problems for which interactive protocols exist is precisely the class of problems
solvable by Turing machines within polynomial space; this class is believed to be far
more extensive than NP.

As an example, let us give an interactive protocol for the graph nonisomorphism
problem, in which the input string represents a pair G, H of graphs, and 17 is the
property that G and Hare not isomorphic. The dialogue consists of a sequence of
rounds. In each round, V tosses a fair coin and, depending on the outcome of the
coin toss, selects either G or H. Then, using randomization, V constructs a graph
K that is isomorphic to the selected graph, but differs from the selected graph by
having the names of the vertices randomly permuted. Then V sends K to P and
challenges P to declare whether it is G or H that was selected and scrambled in order
to produce K. In the case where G and H are not isomorphic, P gives the unique
correct reply; otherwise he arbitrarily chooses G or H. The verifier V declares that
G and Hare nonisomorphic if and only if P gives the correct answer in each of a
long series of rounds. If G and H are not isomorphic, then P, by virtue of his

196 RX. Karp

unlimited computing power, will always be able to determine whether K came from
G or from H, and thus will be able to persuade I/ to accept G, H; this is the basis
for the completeness of the protocol. If G and N are isomorphic, then P, being
unaware of V’s coin tosses, will be making a pure guess each time as to whether K
comes from G or from H, and thus will be very unlikely to answer correctly every
time; this is the basis for the soundness of the protocol.

The protocol for graph nonisomorphism has the further property of being a zero-
knowledge protocol; this means that, in the course of demonstrating that G and H
are nonisomorphic, P reveals no information about the two graphs except the fact
that they are not isomorphic. This property is useful in the application of interactive
protocols to various kinds of business transactions between mutually distrustful par-
ties. For example, if the purpose of the protocol were for P to identify himself to
V by proving that he possessed a certain piece of secret information (P’s digital
signature), it would be undesirable if the dialogue were to leak anything about the
signature except its correctness, since V might be able to use the leaked information
to guess the secret information and thereby impersonate P.

11. Randomness as a computational resource

We have seen that randomized algorithms are often simple, beautiful and effi-
cient, but is there such a thing as a randomized algorithm? Do computers really have
available a source of random bits? One approach, which has often been proposed
but seldom put into practice, is to build into a computer a physical source of ran-
domness based on shot noise or some other process that is random at the quantum-
mechanical level. The more common approach in practice is to use a “random
number generator”; i.e., an algorithm which starts with a short “seed” which is
presumed to be random and produces from it a long bit string which has some of
the mathematical properties that random strings are expected to have.

It is clear that random bits, if they can be produced at all, will be slow and costly
to generate. For this reason, there has been considerable interest in reducing the
number of truly random bits that algorithms require, or else showing that imperfect
sources of randomness are adequate. We shall briefly describe some possible ap-
proaches.

11.1. Techniques for finding a witness

As we discussed earlier in the paper, a Monte Carlo algorithm receives, in addi-
tion to its input data X, a string y of random bits of some length n determined by
the length of x. The string x is to be accepted if and only if at least one string y is
a “witness” to the acceptance of x. The salient property of a Monte Carlo algorithm
is that witnesses are either nonexistent or abundant; more precisely, if x is to be ac-
cepted, then at least half of the n-bit strings are witnesses.

Randomized algorithms 197

We would like an algorithm that doesn’t use too many random bits but has an
extremely high probability of finding a witness whenever witnesses exist. One way
is to keep generating random n-bit strings; at each trial, the probability of failing
to find a witness is at most 3. A more efficient approach, first proposed in [26,43],
is based on a special type of bipartite graph called a disperser. A (d, n, t)-disperser
is regular of degree d, has a vertex set consisting of two copies, A and B, of (0, l}“,
and has the property that, for every t-element set WA, at least half the vertices
in B are adjacent to at least one vertex in T. In order to find a witness, we can ex-
pend n bits to generate a random vertex a~,4 and then test for witnesshood all d
of the n-bit strings in B that are adjacent to a. The probability that we will fail to
find a witness in this way is at most t2-“. It is possible to efficiently construct
families of dispersers in which d is a polynomial in n and t = 2”‘, where c is a con-
stant less than 1. This leads to randomized algorithms that use n random bits, for
which the probability of failing to find a witness when one exists is exponentially
small in n. The paper [15] is a recent survey covering the construction and applica-
tion of dispersers. Other approaches to the efficient generation of witnesses involve
random walks on expanders [3] and the use of universal families of hash functions
[22]. The first of these approaches allows the error probability of a Monte Carlo
algorithm to be reduced to 2-k using O(n + k) bits.

I I .2. k-wise independent random variables

Certain randomized algorithms do not require a source of completely independent
random bits; instead, it is sufficient that each individual bit shall have an equal
chance of being 0 or 1, and that the stream of bits shall be k-wise independent. This
latter property means that any k of the bits in the sequence are mutually independent.
Because k-wise independence is often sufficient, considerable attention has been
devoted to the generation of long k-wise independent bit strings from short strings
of completely independent bits. One powerful approach is as follows. Let A be a
m x n matrix over GF[2], the field with two elements, such that any k rows are
linearly independent; the construction of such matrices is a well-studied central
problem in the theory of error-correcting codes. Let b be a n-vector of completely
independent random bits, each of which is equally likely to be 0 or 1. Then the m-
vector Ab has the property that its components are k-wise independent, and that
each component is equally likely to be 0 or 1. A related construction works over
ZP, the integers modulo a prime p. In order to generate a sequence b,, bl, . . . , bP_l
of p k-wise independent elements, each of which is uniformly distributed over ZP,
we start with a seed ao, aI, . . . , ok-l consisting of k mutually independent elements,
each of which has the uniform distribution over i&, and generate the desired se-
quence according to the formula

Thus, the elements of the seed are used as the coefficients of a polynomial, and the

198 R. A4. Karp

long sequence is formed by the values of the polynomial at i = 0, 1, . . . ,p - 1.
In cases where pairwise independence is sufficient, it is often possible to eliminate

randomization altogether. For example, Luby (3 11 has given a randomized parallel
algorithm for constructing a maximal independent set of vertices in a graph. The
algorithm requires a sequence of p pairwise independent elements, each drawn from
the uniform distribution over Z$,. Such a sequence can be formed from a seed con-
sisting of two elements of Z$. An alternate interpretation is that we are working
with a very small probability space whose points are the p2 possible seeds, rather
than the very large probability space that would be required if we were generating
completely independent random elements of ZP. Therefore, we can simply
enumerate all the possible seeds (Q, aI) and run the algorithm for each one. By the
same argument that justifies the correctness of the original randomized algorithm,
most of these choices have to work. Hence, at the cost of some additional computa-
tion, randomness can be eliminated entirely.

11.3. Imperfect sources of randomness

One difficulty with the available physical sources of randomness is that they
generate correlated sequences of bits, rather than the completely independent ran-
dom bits that one would ideally want. This difficulty has motivated Vazirani and
Vazirani [48] to investigate the power of algorithms based on imperfect sources of
randomness. They define a slightly random source as one which satisfies the follow-
ing very weak requirement: at any step, the conditional probability that the next bit
will be 0, given the entire past sequence of bits, lies between a and 1 -a, where a
is some fixed positive constant. Vazirani and Vazirani show that, if a problem can
be solved by a polynomial-time Monte Carlo algorithm using an ideal source of ran-
dom bits, then the problem can also be solved using an arbitrary slightly random
source.

11.4. Pseudo-random number generators

A pseudo-random number generator [8,49] is defined as a parametrized sequence
of functions g= {g,}, such that each function g, : (0, I}“- (0, I}‘(“) takes a seed
consisting of n bits and “stretches” that seed, by a deterministic process, to a longer
string of length t(n). For example, we may have t(n) = n2. We say that such a se-
quence of functions is a pseudo-random number generator if no test that can be im-
plemented in polynomial time, even with the help of true randomness, can
distinguish the outputs of the generator from a random sequence. This property has
the consequence that, in any polynomial-time randomized algorithm, the output of
a pseudo-random number generator can safely be used in place of an ideal source
of random bits.

It turns out, somewhat surprising, that there is a profound connection between
the concept of a pseudo-random number generator and the concept of a one-way

Randomized algorithms 199

function, which is of central importance in cryptography. A one-way function is,
roughly speaking, a function that is easy to compute but hard to invert. More
specifically, a one-way permutation is a sequence f = {f,}, where each f, is a one-
to-one function from (0, l}” onto itself, such that f(x) can be computed in
polynomial time, but no randomized polynomial-time algorithm has a significant
chance of computing the preimage f-‘(y) for a randomly chosen element y.

It is not known whether one-way functions exist. If P = NP, then they definitely
do not exist. There are, however, a number of seemingly intractable problems in
number theory which have been conjectured to give rise to one-way permutations.
One example is the discrete logarithm problem. Let p be a prime and let g be a
generator of Z;. Let f(x) = g’. Then f is easy to compute but its inverse function,
the discrete logarithm, seems intractable.

It has recently been proven 1211 that every one-way function can be used to con-
struct a pseudo-random number generator. In the case where the one-way function
is a permutation f, the construction of the generator is particularly simple. The seed
consists of two strings, XE (0, I}” and y E (0, l}“, and the output of the generator
is obtained by iterating f on x and computing the scalar product (mod 2) of each
iterate withy:x.y,f(x).y,f(f(x)).y ,..., fikl(x).y ,....

References

[1] G.M. Adelson-Velskiiand E.M. Landis, Dokl. Akad. Nauk SSSR 146 (1962) 263-266; also: Soviet

Math. 3 (1962) 1259-1263 (English translation).

[2] Adleman and M.A. Huang, Recognizing primes in random polynomial time, Tech. Rep., Depart-

ment of Computer Science, University of Southern California, Los Angeles, CA (1988).

[3] M. Ajtai, J. Komlos and E. Szemeredi, Deterministic simulation in LOGSPACE, in: Proceedings

of the Nineteenth ACM Symposium on Theory of Computing (STOC) (1987) 132.

[4] C. Aragon and R. Seidel, Randomized search trees, in: Proceedings of the Thirtieth Symposium on

Foundations of Computer Science (FOCS) (1989) 540-545.

[5] I. Barany and Z. Fiiredi, Computing the volume is difficult, in: Proceedings of the Eighteenth ACM

Symposium on Theory of Computing (STOC) (1986) 442-447.

[6] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. 43 (1957) 842-844.

[7] E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970) 713-735.

[8] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random

bits, SIAM J. Comput. 13 (1984) 850-864.

[9] A.Z. Broder, How hard is it to marry at random? (On the approximation of the permanent), in:

Proceedings of the Eighteenth ACM Symposium on Theory of Computing (STOC) (1986) 50-58.

[lo] B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane,

in: Proceedings of the Twenty-Ninth Symposium on Foundations of Computer Science (FOCS)

(1988) 590-600.

[ll] K.L. Clarkson, New applications of random sampling in computational geometry, Discrete Com-

put. Geom. 2 (1987) 195-222.

[12] K.L. Clarkson, A Las Vegas algorithm for linear programming when the dimension is small, in:

Proceedings of the Twenty-Ninth Symposium on Foundations of Computer Science (FOCS) (1988)

452-457.

R.M. Karp 200

[I31

1141

1151

1161

[I71

WI

1191

t201

[211

[221

1231

K.L. Clarkson and P. Shor, Applications of random sampling in computational geometry II,

Discrete Comput. Geom. 4 (1989) 387-421.

K.L. Clarkson, R.E. Tarjan and C.J. Van Wyk, A fast Las Vegas algorithm for triangulating a sim-

ple polygon, Discrete Comput. Geom. 4 (1989) 423-432.

A. Cohen and A. Wigderson, Manuscript, Hebrew University (1989).

P. Dagum, M. Luby, M. Mihail and U. Vazirani, Polpopes, permanents and graphs with large fac-

tors, in: Proceedings of the Twenty-Ninth Symposium on Foundations of Computer Science

(FOCS) (1988) 412-421.

M. Dyer, A. Frieze and R. Kannan, A random polynomial time algorithm for approximating the

volume of convex bodies, in: Proceedings of the Twenty-First ACM Symposium on Theory of Com-

puting (STOC) (1989) 375-381.

J. Edmonds, Paths, trees and flowers, J. Res. Nat. Bur. Standards 17 (1965) 449-467.

J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (1977)

675-695.

S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive proof systems,

SIAM J. Comput. 18 (1989) 186-208.

R. Impagliazzo, L.A. Levin and M. Luby, Pseudorandom generation from one-way functions, in:

Proceedings of the Twenty-First ACM Symposium on Theory of Computing (STOC) (1989) 12-24.

R. Impagliazzo and D. Zuckerman, How to recycle random bits, in: Proceedings of the Thirtieth

Symposium on Foundations of Computer Science (FOCS) (1989) 248-253.

M. Jerrum and A. Sinclair, Conductance and the rapid mixing property for Markov chains: The

approximation of the permanent resolved, in: Proceedings of the Eighteenth ACM Symposium on

Theory of Computing (STOC) (1986) 235-243.

[24] N. Karmarkar, R. Karp, R. Lipton, L. Lovasz and M. Luby, A Monte Carlo algorithm for

estimating the permanent, SIAM J. Comput., to appear.

[25] R.M. Karp and M. Luby, Monte Carlo algorithms for the planar multiterminal network reliability

problem, J. Complexity 1 (1985) 45-64.

[26] R.M. Karp, N. Pippenger and M. Sipser, A time-randomness trade-off, AMS Conference on Prob-

abilistic Computational Complexity, Durham, NH (1985).

[27] R.M. Karp and M. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res.

Develop. 31 (1987) 249-260.

[28] R. Karp, E. Upfal and A. Wigderson, Constructing a perfect matching in random NC, Com-

binatorica 6 (1986) 35-48.

[29] R.M. Karp and Y. Zhang, A randomized parallel branch-and-bound procedure, in: Proceedings of

the Twentieth ACM Symposium on Theory of Computing (STOC) (1988) 290-300.

[30] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching (Addison-Wesley,

Menlo Park, CA, 1973) 217-220.

[31] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput.

15 (1986) 1036-1053.

1321 S. Micali and V.V. Vazirani, An O(m) algorithm for finding maximum matching in general

graphs, in: Proceedings of the Twenty-First Symposium on Foundations of Computer Science

(FOCS) (1980) 17-27.

[33] K. Mulmuley, A fast planar partition algorithm, I, in: Proceedings of the Twenty-Ninth Symposium

on Foundations of Computer Science (FOCS) (1988) 580-589.

[34] K. Mulmuley, An efficient algorithm for hidden surface removal, in: Proceedings ACM SIG-

GRAPH (1989) 379-388.

[35] K. Mutmuley, A fast planar partition algorithm, II, in: Proceedings of the Fifth ACM Symposium

on Computational Geometry (1989) 33-43.

[36] K. Mulmuley, U.V. Vazirani and V.V. Vazirani, Matching is as easy as matrix inversion, Com-

binatorica 7 (1987) 105-113.

[37] M.O. Rabin, Probabilistic algorithms, in: J. Traub, ed., Algorithms and Complexity (Academic

Press, New York, 1976).

Randomized algorithms 201

[38] M.O. Rabin, The choice coordination problem, Acta Inform. 17 (1982) 121-134.

[39] H. Ryser, Combinatorial mathematics, in: Carus Mathematical Monographs 14 (Math. Assoc.

America, Washington, DC, 1963) 26-28.

[40] J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, .I. ACM 27

(1980) 701-717.

[41] R. Seidel, Linear programming and convex hulls made easy, in: Proceedings of the Sixth ACM Sym-

posium on Computational Geometry (1990).

[42] A. Shamir, IP = PSPACE, in: Proceedings of the Twenty-Second ACM Symposium on the Theory

of Computing (STOC) (1990) 11-15.

[43] M. Sipser, Expanders, randomness or time vs. space, in: Structure in Complexity Theory (Springer,

Berlin, 1986) 325.

[44] D.D. Sleator and R.E. Tarjan, Self-adjusting binary search trees, J. ACM 26 (1985) 652-686.

[45] R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977)

84-85.

[46] W.T. Tutte, The factorization of linear graphs, J. London Math. Sot. 22 (1947) 107-111.

[47] V.V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the O(rm

general graph matching algorithm, #89-1035, Department of Computer Science, Cornell Universi-

ty, Ithaca, NY (1989).

[48] V.V. Vazirani and U.V. Vazirani, Random polynomial time is equal to semi-random polynomial

time, in: Proceedings of the Twenty-Sixth Symposium on Foundations of Computer Science (FOCS)

(1985) 417-428.

[49] A.C. Yao, Theory and applications of trapdoor functions, in: Proceedings of the Twenty-Third

Symposium on Foundations of Computer Science (FOCS) (1982) 80-91.

[50] Y. Zhang, Parallel algorithms for combinatorial search problems, Ph.D. Thesis, University of

California, Berkeley, CA (1989).

