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Preface

THE last decade has witnessed a tremendous growth in the area of randomized
algorithms. During this period, randomized algorithms went from being a tool in
computational number theory to finding widespread application in many types
of algorithms. Two benefits of randomization have spearheaded this growth:
simplicity and speed. For many applications, a randomized algorithm is the
simplest algorithm available, or the fastest, or both.

This book presents the basic concepts in the design and analysis of randomized
algorithms at a level accessible to advanced undergraduates and to graduate
students. We expect it will also prove to be a reference to professionals wishing
to implement such algorithms and to researchers seeking to establish new results
in the area.

Organization and Course Information

We assume that the reader has had undergraduate courses in Algorithms and
Complexity, and in Probability Theory. The book is organized into two parts.
The first part, consisting of seven chapters, presents basic tools from probability
theory and probabilistic analysis that are recurrent in algorithmic applications.
Applications are given along with each tool to illustrate the tool in concrete
settings. The second part of the book also contains seven chapters, each
focusing on one area of application of randomized algorithms. The seven
areas of application we have selected are: data structures, graph algorithms,
geometric algorithms, number theoretic algorithms, counting algorithms, parallel
and distributed algorithms, and online algorithms. Naturally, some of the
algorithms used for illustration in Part I do fall into one of these seven categories.
The book is not meant to be a compendium of every randomized algorithm that
has been devised, but rather a comprehensive and representative selection. The
Appendices review basic material on probability theory.
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We have taught several regular as well as short-term courses based on the
material in this book, as have some of our colleagues. It is virtually impossible
to cover all the material in the book in a single academic term or in a week’s
intensive course. We regard Chapters 14 as the core around which a course may
be built. Following the treatment of this material, the instructor may continue
with that portion of the remainder of Part I that supports the material of Part II
(s)he wishes to cover. Chapters 5-13 depend only on material in Chapters 1-4,
with the following exceptions:

1. Chapter 5 on Probabilistic Methods is a prerequisite for Chapters 6 (Random
Walks) and 11 (Approximate Counting).

2. Chapter 6 on Random Walks is a prerequisite for Chapter 11 (Approximate
Counting).

3. Chapter 7 on Algebraic Techniques is a prerequisite for Chapters 14 (Number
Theory and Algebra) and 12 (Parallel and Distributed Algorithms).

We have included three types of problems in the book. Exercises occur
throughout the text, and are designed to deepen the reader’s understanding of
the material being covered in the text. Usually, an exercise will be a variant,
extension, or detail of an algorithm or proof being studied. Problems appear
at the end of each chapter and are meant to be more difficult and involved
than the Exercises in the text. In addition, Research Problems are listed in the
Discussion section at the end of each chapter. These are problems that were
open at the time we wrote the book; we offer them as suggestions for students
(and of course professional researchers) to work on.

Based on our experience with teaching this material, we recommend that the
instructor use one of the following course organizations:

e A comprehensive basic course: In addition to Chapters 1—4, this course would
cover the material in Chapters 5, 6, and 7 (thus spanning all of Part 1).

* A course oriented toward algebra and number theory: Following Chapters 1-4,
this course would cover Chapters 7, 14, and 12.

® A course oriented toward graphs, data structures, and geometry: Following
Chapters 1-4, this course would cover Chapters 8, 9, and 10.

e A course oriented toward random walks and counting algorithms: Following
Chapters 1-4, this course would cover Chapters 5, 6, and 11.

Each of these courses may be pruned and given in abridged form as an intensive
course spanning 3-5 days.

Paradigms for Randomized Algorithms

A handful of general principles lies at the heart of almost all randomized
algorithms, despite the multitude of areas in which they find application. We
briefly survey these here, with pointers to chapters in which examples of these
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principles may be found. The following summary draws heavily from ideas in
the survey paper by Karp [243].

Foiling an adversary. The classical adversary argument for a deterministic
algorithm establishes a lower bound on the running time of the algorithm by
constructing an input on which the algorithm fares poorly. The input thus
constructed may be different for each deterministic algorithm. A randomized
algorithm can be viewed as a probability distribution on a set of deterministic
algorithms. While the adversary may be able to construct an input that foils
one (or a small fraction) of the deterministic algorithms in the set, it is difficult
to devise a single input that is likely to defeat a randomly chosen algorithm.
While this paradigm underlies the success of any randomized algorithm, the
most direct examples appear in Chapter 2 (in game tree evaluation), Chapter 7
(in efficient proof verification), and Chapter 13 (in online algorithms).

Random sampling. The idea that a random sample from a population is
representative of the population as a whole is a pervasive theme in randomized
algorithms. Examples of this paradigm arise in almost all the chapters, most
notably in Chapters 3 (selection algorithms), 8 (data structures), 9 (geometric
algorithms), 10 (graph algorithms), and 11 (approximate counting).

Abundance of witnesses, Often, an algorithm is required to determine whether
an input (say, a number x) has a certain property (for example, “is x prime?”).
It does so by finding a witness that x has the property. For many problems,
the difficulty with doing this deterministically is that the witness lies in a search
space that is too large to be searched exhaustively. However, by establishing
that the space contains a large number of witnesses, it often suffices to choose
an element at random from the space. The randomly chosen item is likely to be
a witness; further, independent repetitions of the process reduce the probability
that a witness is not found on any of the repetitions. The most striking examples
of this phenomenon occur in number theory (Chapter 14).

Fingerprinting and hashing. A long string may be represented by a short
fingerprint using a random mapping. In some pattern-matching applications, it
can be shown that two strings are likely to be identical if their fingerprints are
identical; comparing the short fingerprints is considerably faster than comparing
the strings themselves (Chapter 7). This is also the idea behind hashing, whereby
a small set S of elements drawn from a large universe is mapped into a
smaller universe with a guarantee that distinct elements in S are likely to have
distinct images. This leads to efficient schemes for deciding membership in
S (Chapters 7 and 8) and has a variety of further applications in generating
pseudo-random numbers (for example, two-point sampling in Chapter 3 and
pairwise independence in Chapter 12) and complexity theory (for instance,
algebraic identities and efficient proof verification in Chapter 7).

Random re-ordering. A striking use of randomization in a number of problems
in data structuring and computational geometry involves randomly re-ordering
the input data, followed by the application of a relatively naive algorithm. After
the re-ordering step, the input is unlikely to be in one of the orderings that is
pathological for the naive algorithm. (Chapters 8 and 9).
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Load balancing. For problems involving choice between a number of re-
sources, such as communication links in a network of processors, randomization
can be used to “spread” the load evenly among the resources, as demonstrated
in Chapter 4. This is particularly useful in a parallel or distributed environment
where resource utilization decisions have to be made locally at a large number
of sites without reference to the global impact of these decisions.

Rapidly mixing Markov chains. For a variety of problems involving count-
ing the number of combinatorial objects with a given property, we have ap-
proximation algorithms based on randomly sampling an appropriately defined
population. Such sampling is often difficult because it may require computing
the size of the sample space, which is precisely the problem we would like to
solve via sampling. In some cases, the sampling-can be achieved by defining a
Markov chain on the elements of the population and showing that a short ran-
dom walk using this Markov chain is likely to sample the population uniformly
(Chapter 11).

Isolation and symmetry breaking. In parallel computation, when solving a
problem with many feasible solutions it is important to ensure that the different
processors are working toward finding the same solution. This requires isolating
a specific solution out of the space of all feasible solutions without actually
knowing any single element of the solution space. A clever randomized strategy
achieves isolation, by implicitly choosing a random ordering on the feasible
solutions and then requiring the processors to focus on finding the solution of

lowest rank. In distributed computation, it is often necessary for a collection of

processors to break a deadlock and arrive at a consensus. Randomization is a
powerful tool in such deadlock-avoidance, as shown in Chapter 12.

Probabilistic methods and existence proofs. It is possible to establish that an
object with certain properties exists by arguing that a randomly chosen object
has the properties with positive probability. Such an argument gives no clue
as to how to find such an object. Sometimes, the method is used to guarantee
the existence of an algorithm for solving a problem; we thus know that the
algorithm exists, but have no idea what it looks like or how to construct it. This
raises the issue of non-uniformity in algorithms (Chapters 2 and 5).

Conventions

Most of the conventions we use are described where they first arise. One worth
mentioning here is the issue of integer breakage: as long as it does not materially
affect the algorithm or analysis being considered (and the intent is unambiguous
from the context), we omit ceilings and floors from numbers that strictly should
be integers. Thus, we might say “choose \/ﬁ elements from the set of size n”
even when n is not a perfect square. Our intent is to present the crux of the
algorithm/analysis without undue notational clutter from ceilings and floors.
The expression log x denotes log, x, and the expression In x denotes the natural
logarithm of x.
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CHAPTER 1

Introduction

CoONSIDER sorting a set S of n numbers into ascending order. If we could find
a member y of S such that half the members of S are smaller than y, then we
could use the following scheme. We partition S \ {y} into two sets S; and S,,
where S; consists of those elements of S that are smaller than y, and S; has the
remaining elements. We recursively sort S; and S, then output the elements of
Si in ascending order, followed by y, and then the elements of S, in ascending
order. In particular, if we could find y in cn steps for some constant ¢, we could
partition S \ {y} into S; and S, in n — 1 additional steps by comparing each
element of S with y; thus, the total number of steps in our sorting procedure
would be given by the recurrence

T(n) <2T(n/2) + (c + 1)n, (1.1)

where T(k) represents the time taken by this method to sort k numbers on the
worst-case input. This recurrence has the solution T(n) < ¢’nlogn for a constant
c, as can be verified by direct substitution.

The difficulty with the above scheme in practice is in finding the element y
that splits S \ {y} into two sets S; and S, of the same size. Examining (1.1), we
notice that the running time of O(nlogn) can be obtained even if S; and S, are
approximately the same size — say, if y were to split S\ {y} such that neither S,
nor S, contained more than 3n/4 elements. This gives us hope, because we know
that every input S contains at least n/2 candidate splitters y with this property.
How do we quickly find one?

One simple answer is to choose an element of S at random. This does not
always ensure a splitter giving a roughly even split. However, it is reasonable to
hope that in the recursive algorithm we will be lucky fairly often. The result is
an algorithm we call RandQS, for Randomized Quicksort.

Algorithm RandQS is an example of a randomized algorithm — an algorithm
that makes random choices during execution (in this case, in Step 1). Let us
assume for the moment that this random choice can be made in unit time; we
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will say more about this in the Notes section. What can we prove about the
running time of RandQS?

Algorithm RandQS:

Input: A set of numbers S.

Output: The elements of S sorted in increasing order.

1. Choose an element y uniformly at random from S: every element in S has
equal probability of being chosen.

2. By comparing each element of S with y, determine the set S; of elements
smaller than y and the set S, of elements larger than y.

3. Recursively sort Sy and S,. Output the sorted version of Sy, followed by vy,
and then the sorted version of S,.

As is usual for sorting algorithms, we measure the running time of RandQS
in terms of the number of comparisons it performs since this is the dominant
cost in any reasonable implementation. In particular, our goal is to analyze the
expected number of comparisons in an execution of RandQS. Note that all the
comparisons are performed in Step 2, in which we compare a randomly chosen
partitioning element to the remaining elements. For 1 <i < n, let S;;) denote the
element of rank i (the ith smallest element) in the set S. Thus, S, denotes the
smallest element of S, and S, the largest. Define the random variable X;; to
assume the value 1 if S and S;) are compared in an execution, and the value 0
otherwise. Thus, Xj; is a count of comparisons between S and S;, and so the
total number of comparisons is >_¢; 3~ ., Xi;. We are interested in the expected
number of comparisons, which is clearly

n n
E[) > Xyl=) > EXl (12)
i=1 j>i i=1 j>i
This equation uses an important property of expectations called linearity of
expectation; we will return to this in Section 1.3.
Let p;; denote the probability that S; and S(; are compared in an execution.
Since X;; only assumes the values 0 and 1,

E[X;] = pij x 1 +(1 — pjj) x 0 = pyj. (1.3)

To facilitate the determination of p;;, we view the execution of RandQS as a
binary tree T, each node of which is labeled with a distinct element of S. The
root of the tree is labeled with the element y chosen in Step 1, the left sub-tree
of y contains the elements in S; and the right sub-tree of y contains the elements
in S;. The structures of the two sub-trees are determined recursively by the
executions of RandQS on S; and S,. The root y is compared to the elements in
the two sub-trees, but no comparison is performed between an element of the
left sub-tree and an element of the right sub-tree. Thus, there is a comparison
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between S and S if and only if one of these elements is an ancestor of the
other.

The in-order traversal of T will visit the elements of S in a sorted order,
and this is precisely what the algorithm outputs; in fact, T is a (random)
binary search tree (we will encounter this again in Section 8.2). However, for
the analysis we are interested in the level-order traversal of the nodes. This
is the permutation 7 obtained by visiting the nodes of T in increasing order
of the level numbers, and in a left-to-right order within each level; recall that
the ith level of the tree is the set of all nodes at distance exactly i from the
root.

To compute p;;, we make two observations. Both observations are deceptively
simple, and yet powerful enough to facilitate the analysis of a number of more
complicated algorithms in later chapters (for example, in Chapters 8 and 9).

1. There is a comparison between S;; and S;;) if and only if Sj) or §(;) occurs earlier
in the permutation = than any element S, such that i </ < j. To see this, let
Sw be the earliest in = from among all elements of rank between i and j. If
k ¢ {i,j}, then S will belong to the left sub-tree of Sy while Si;) will belong
to the right sub-tree of Sy), implying that there is no comparison between S
and S;). Conversely, when k € {i,j}, there is an ancestor—descendant relationship
between S and S(;), implying that the two elements are compared by RandQS.

2. Any of the elements Sg), Si+1).--.,S¢) is equally likely to be the first of these
elements to be chosen as a partitioning element, and hence to appear first in
n. Thus, the probability that this first element is either S;) or S is exactly
2/(j—i+1).

We have thus established that p; = 2/(j —i+ 1). By (1.2) and (1.3), the
expected number of comparisons is given by

S = YT

i=1 j>i i=1 j>i

n n—i-{—l2
< D %
i=1 k=1

n n 1
< 222;

i=1 k=1

It follows that the expected number of comparisons is bounded above by 2nH,,
where H, is the nth Harmonic number, defined by H, = > ;_, 1/k.

Theorem 1.1: The expected number of comparisons in an execution of RandQS is
at most 2nH,.

From Proposition B.4 (Appendix B), we have that H, ~ Inn+ ©(1), so that
the expected running time of RandQS is O(nlogn).
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Exercise 1.1: Consider the (random) permutation 7 of S induced by the level-order
traversal of the tree T corresponding to an execution of RandQS. Is 7 uniformly
distributed over the space of ail permutations of the elements S, ..., §;5?

It is worth examining carefully what we have just established about RandQS.
The expected running time holds for every input. It is an expectation that
depends only on the random choices made by the algorithm, and not on any
assumptions about the distribution of the input. The behavior of a randomized
algorithm can vary even on a single input, from one execution to another. The
running time becomes a random variable, and the running-time analysis involves
understanding the distribution of this random variable.

We will prove bounds on the performances of randomized algorithms that rely
solely on their random choices and not on any assumptions about the inputs.
It is important to distinguish this from the probabilistic analysis of an algorithm,
in which one assumes a distribution on the inputs and analyzes an algorithm
that may itself be deterministic. In this book we will generally not deal with
such probabilistic analysis, except occasionally when illustrating a technique for
analyzing randomized algorithms.

Note also that we have proved a bound on the expected running time of the
algorithm. In many cases (including RandQS, see Problem 4.14), we can prove
an even stronger statement: that with very high probability the running time of
the algorithm is not much more than its expectation. Thus, on almost every
execution, independent of the input, the algorithm is shown to be fast.

The randomization involved in our RandQS algorithm occurs only in Step
1, where a random element is chosen from a set. We define a randomized
algorithm as an algorithm that is allowed access to a source of independent,
unbiased, random bits; it is then permitted to use these random bits to influence
its computation. It is easy to sample a random element from a set S by choosing
O(log|S|) random bits and then using these bits to index an element in the
set. However, some distributions cannot be sampled using only random bits.
For example, consider an algorithm that picks a random real number from
some interval. This requires infinitely many random bits. While we will usually
not worry about the conversion of random bits to the desired distribution, the
reader should keep in mind that random bits are a resource whose use involves
a non-trivial cost. Moreover, there is sometimes a non-trivial computational
overhead associated with sampling from a seemingly well-behaved distribution.
For example, consider the problem of using a source of unbiased random bits
to sample uniformly from a set S whose cardinality is not a power of 2 (see
Problem 1.2).

There are two principal advantages to randomized algorithms. The first is
performance — for many problems, randomized algorithms run faster than the
best known deterministic algorithms. Second, many randomized algorithms are
simpler to describe and implement than deterministic algorithms of comparable
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performance. The randomized sorting algorithm described above is an exam-
ple. This book presents many other randomized algorithms that enjoy these
advantages.

In the next few sections, we will illustrate some basic ideas from probability
theory using simple applications to randomized algorithms. The reader wishing
to review some of the background material on the analysis of algorithms or on
elementary probability theory is referred to the Appendices.

1.1. A Min-Cut Algorithm

Two events & and &, are said to be independent if the probability that they
both occur is given by

Pr[&; N &, = Pr[€] x Pr[€s] (1.4)

(see Appendix C). In the more general case where £; and &, are not necessarily
independent,

Prl€1NE,) = Pr[€1 | £2] X Pr[€2] =Pr[€, | £1] x Pr[&], (1.5)

where Pr[€; | ;] denotes the conditional probability of £; given £,. Sometimes,
when a collection of events is not independent, a convenient method for com-
puting the probability of their intersection is to use the following generalization
of (1.5).

Prin ] = PriE(] x Pr&2 | £ x Pr[€s | £ NE) - Pr[&x | NSIE]  (1.6)

Consider a graph-theoretic example. Let G be a connected, undirected multi-
graph with n vertices. A multigraph may contain multiple edges between any pair
of vertices. A cut in G is a set of edges whose removal results in G being broken
into two or more components. A min-cut is a cut of minimum cardinality. We
now study a simple algorithm for finding a min-cut of a graph.

We repeat the following step: pick an edge uniformly at random and merge
the two vertices at its end-points (Figure 1.1). If as a result there are several
edges between some pairs of (newly formed) vertices, retain them all. Edges
between vertices that are merged are removed, so that there are never any
self-loops. We refer to this process of merging the two end-points of an edge
into a single vertex as the contraction of that edge. With each contraction, the
number of vertices of G decreases by one. The crucial observation is that an
edge contraction does not reduce the min-cut size in G. This is because every
cut in the graph at any intermediate stage is a cut in the original graph. The
algorithm continues the contraction process until only two vertices remain; at
this point, the set of edges between these two vertices is a cut in G and is output
as a candidate min-cut.

Does this algorithm always find a min-cut? Let us analyze its behavior after
first reviewing some elementary definitions from graph theory.

7
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2 3

Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge e = (1,2) is
shown.

» Definition 1.1: For any vertex v in a multigraph G, the neighborhood of v,
denoted I'(v), is the set of vertices of G that are adjacent to v. The degree of v,
denoted d(v), is the number of edges incident on v. For a set S of vertices of G,
the neighborhood of S, denoted I'(S), is the union of the neighborhoods of the
constituent vertices.

Note that d(v) is the same as the cardinality of I'(v) when there are no self-loops
or multiple edges between v and any of its neighbors.

Let k be the min-cut size. We fix our attention on a particular min-cut C with
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of
degree less than k, and its incident edges would be a min-cut of size less than k.
We will bound from below the probability that no edge of C is ever contracted
during an execution of the algorithm, so that the edges surviving till the end are
exactly the edges in C.

Let & denote the event of not picking an edge of C at the ith step, for
1 < i < n—2. The probability that the edge randomly chosen in the first step is in
C is at most k/(nk/2) = 2/n, so that Pr[£,] = 1 —2/n. Assuming that £; occurs,
during the second step there are at least k(n — 1)/2 edges, so the probability of
picking an edge in C is at most 2/(n — 1), so that Pr[& | El=1=-2/(n—1).
At the ith step, the number of remaining vertices is n — i+ 1. The size of the
min-cut is still at least k, so the graph has at least k(n—i+1)/2 edges remaining
at this step. Thus, Pr[&; | n;.;llg i1 =1—2/(n—i+1). What is the probability
that no edge of C is ever picked in the process? We invoke (1.6) to obtain

P n—2£ = 1 2 . 2
r[Mi=i ilzg RSl S

The probability of discovering a particular min-cut (which may in fact be
the unique min-cut in G) is larger than 2/n®. Thus our algorithm may err
in declaring the cut it outputs to be a min-cut. Suppose we were to repeat
the above algorithm n?/2 times, making independent random choices each
time. By (1.4), the probability that a min-cut is not found in any of the n?/2

8
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attempts is at most

2
) n/2

By this process of repetition, we have managed to reduce the probability of fail-
ure from 1—2/n? to a more respectable 1/e. Further executions of the algorithm
will make the failure probability arbitrarily small — the only consideration being
that repetitions increase the running time.

Note the extreme simplicity of the randomized algorithm we have just stud-
ied. In contrast, most deterministic algorithms for this problem are based on
network flows and are considerably more complicated. In Section 10.2 we will
return to the min-cut problem and fill in some implementation details that
have been glossed over in the above presentation; in fact, it will be shown
that a variant of this algorithm has an expected running time that is signifi-
cantly smaller than that of the best known algorithms based on network flow.

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing
a random edge for contraction we choose two vertices at random and coalesce them
into a single vertex. Show that there are inputs on which the probability that this
modified aigorithm finds a min-cut is exponentially small.

1.2. Las Vegas and Monte Carlo

The randomized sorting algorithm and the min-cut algorithm exemplify two
different types of randomized algorithms. The sorting algorithm always gives
the correct solution. The only variation from one run to another is its running
time, whose distribution we study. We call such an algorithm a Las Vegas
algorithm.

In contrast, the min-cut algorithm may sometimes produce a solution that is
incorrect. However, we are able to bound the probability of such an incorrect
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we
observed a useful property of a Monte Carlo algorithm: if the algorithm is run
repeatedly with independent random choices each time, the failure probability
can be made arbitrarily small, at the expense of running time. Later, we will see
examples of algorithms in which both the running time and the quality of the
solution are random variables; sometimes these are also referred to as Monte
Carlo algorithms. For decision problems (problems for which the answer to an
1n§tance is YES or NO), there are two kinds of Monte Carlo algorithms: those
Wth one-sided error, and those with two-sided error. A Monte Carlo algorithm is
said to have two-sided error if there is a non-zero probability that it errs when it
Qutput§ either YES or No. It is said to have one-sided error if the probability that
1t errs is zero for at least one of the possible outputs (YES/NO) that it produces.

9
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We will see examples of all three types of algorithms — Las Vegas, Monte Carlo
with one-sided error, and Monte Carlo with two-sided error — in this book."

Which is better, Monte Carlo or Las Vegas? The answer depends on the
application - in some applications an incorrect solution may be catastrophic.
A Las Vegas algorithm is by definition a Monte Carlo algorithm with error
probability 0. The following exercise gives us a way of deriving a Las Vegas
algorithm from a Monte Carlo algorithm. Note that the efficiency of the
derivation procedure depends on the time taken to verify the correctness of a
solution to the problem.

Exercise 1.3: Consider a Monte Carlo algorithm A for a problem 11 whose expected
running time is at most T(n) on any instance of size n and that produces a correct
solution with probability y(n). Suppose further that given a solution to M, we can verify
its correctness in time t(n). Show how to obtain a Las Vegas algorithm that always
gives a correct answer to 1 and runs in expected time at most (T(n) +t(n)/y(n).

In attempting Exercise 1.3 the reader will have to use a simple property of the
geometric random variable (Appendix C). Consider a biased coin that, on a toss,
has probability p of coming up HEADS and 1 — p of coming up TAILS. What is
the expected number of (independent) tosses up to and including the first head?
The number of such tosses is a random variable that is said to be geometrically
distributed. The expectation of this random variable is 1/p. This fact will prove
useful in numerous applications.

Exercise 1.4: Let 0 < & < €; < 1. Consider a Monte Carlo algorithm that gives the
correct solution to a problem with probability at least 1— €, regardiess of the input.
How many independent executions of this algorithm suffice to raise the probability
of obtaining a correct solution to at least 1 — ¢, regardiess of the input?

We say that a Las Vegas algorithm is an efficient Las Vegas algorithm if on
any input its expected running time is bounded by a polynomial function of the
input size. Similarly, we say that a Monte Carlo algorithm is an efficient Monte
Carlo algorithm if on any input its worst-case running time is bounded by a
polynomial function of the input size.

1.3. Binary Planar Partitions

We now illustrate another very useful and basic tool from probability theory:
linearity of expectation. For random variables Xy, X»,...,

E[y_X]=) E[X] (17)
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(See Proposition C.5.) We have implicitly used this tool in our analysis of
RandQS. A point that cannot be overemphasized is that (1.7) holds regardless
of any dependencies between the X;.

» Example 1.1: A ship arrives at a port, and the 40 sailors on board go ashore
for revelry. Later at night, the 40 sailors return to the ship and, in their state
of inebriation, each chooses a random cabin to sleep in. What is the expected
number of sailors sleeping in their own cabins?

The inefficient approach to this problem would be to consider all 40% ar-
rangements of sailors in cabins. The solution to this example will involve the
use of a simple and often useful device called an indicator variable, together with
linearity of expectation. Let X; be 1 if the ith sailor chooses her own cabin, and 0
otherwise. Thus X; indicates whether or not a certain event occurs, and is hence
called an indicator variable. We wish to determine the expected number of sailors
who get their own cabins, which is E[Z?£1 X;]. By linearity of expectation, this
18 2?21 E[X;]. Since the cabins are chosen at random, the probability that the ith
sailor gets her own cabin is 1/40, so E[X;] = 1/40. Thus the expected number of
sailors who get their own cabins is 30, 1/40 = 1.

Our next illustration is the construction of a binary planar partition of a set
of n disjoint line segments in the plane, a problem with applications to computer
graphics. A binary planar partition consists of a binary tree together with some
additional information, as described below. Every internal node of the tree
has two children. Associated with each node v of the tree is a region r(v) of
the plane. Associated with each internal node v of the tree is a line #(v) that
intersects r(v). The region corresponding to the root is the entire plane. The
region r(v) is partitioned by #(v) into two regions ri(v) and ry(v), which are
the regions associated with the two children of v. Thus, any region r of the
partition is bounded by the partition lines on the path from the root to the node
corresponding to r in the tree.

Given a set S = {s1,52,...,5,} of non-intersecting line segments in the plane,
we wish to find a binary planar partition such that every region in the partition
contains at most one line segment (or a portion of one line segment). Notice
that the definition allows us to divide an input line segment s; into several
segments s, Sp,..., each of which lies in a different region. The example of
Figure 1.2 gives such a partition for a set of three line segments (dark lines).

Exercise 1.5: Show that there exists a set of line segments for which no binary
planar partition can avoid breaking up some of the segments into pieces, if each
segment is to lie in a different region of the partition.

Binary planar partitions have two applications in computer graphics. Here,
we describe one of them, the problem of hidden line elimination in computer

11
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AN— \

Figure 1.3: An illustration of index(u,v).

linearity of expectation this equals

n+ZZPr[uﬁv]£n+Z;W}’m. (1.8)

U ptu u

For any line segment u and any finite positive integer i, there are at most two
vertices v and w such that index(u,v) and index(u, w) equals i. This is because
the extension of the segment u along either of the two possible directions will
meet any other line segment at most once. Thus, in each of the two directions,
there is a total ordering on the points of intersection with other segments and
the index values increase monotonically. This implies that

1 — 2
< .
Z index(u,v) +1 Z i+1

vu i=1

Combining this with (1.8) implies that the expected size of P, is bounded above
by

n—1
1
n+2zzm < n+2nH,,
u =1
which is O(nlog n). O

Note that in computing the expected number of intersections, we only made
use of linearity of expectation. We do not require any independence between
the events u -1 v and u 4 w, for segments u,v, and w. Indeed, these events need
not be independent in general.

One way of interpreting Theorem 1.2 is as follows: since the expected size
of the binary planar partition constructed by the algorithm is O(nlogn) on
any input, there must exist a binary autopartition of size O(nlogn) for every
input. This follows from the simple fact that any random variable assumes at
least one value that is no greater than its expectation (and, indeed, one that is
no less than its expectation). Thus we have used a probabilistic argument to
assert that a combinatorial object — in this case a binary autopartition of size
O(nlog n) — exists with absolute certainty rather than with some probability. This
is an example of the probabilistic method in combinatorics. We will study the
probabilistic method in greater detail in Chapter 5.
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1.4. A Probabilistic Recurrence

Frequently, we express a random variable of interest as a recurrence in terms of
other random variables. In this section, we study one such situation using the
Find algorithm analyzed in detail in Problem 1.9. The material in this section,
although useful, is not an essential prerequisite for subsequent topics and may
be omitted in the first reading.

The Find algorithm for selecting the kth smallest of a set S of n elements
works as follows. We pick a random element y and partition S \ {y} into two
sets S; and S, (elements smaller and larger than y respectively) as in RandQS.
Suppose |S;] = k — 1; then y is the desired element and we are done. Otherwise,
if |S1| > k, we recursively find the kth smallest element of S;; else we recursively
find the (k — |S;| — 1)th smallest element in S,.

The expected number of comparisons made by the Find algorithm is the
subject of Problem 1.9. Suppose instead that we were to ask the following
question: what is the expected number of times we make the recursive call in
the algorithm? Equivalently, what is the expected number of times we pick a
random element in the algorithm? While this question may not be especially
important for the Find algorithm, it is the kind of question that arises in the
analysis of a number of parallel and geometric algorithms. Intuitively, we
expect that the size of the residual problem in the Find algorithm is divided
by a constant factor at each recursive level, so that we expect that the number
of recursive invocations is O(logn). Below, we show that this intuition can be
formalized in a general setting.

Let g(x) be a monotone non-decreasing function from the positive reals to the
positive reals. Consider a particle whose position changes at discrete time steps
and is always at a positive integer. If the particle is currently at position m > 1,
it proceeds at the next step to the position m — X, where X is a random variable
ranging over the integers 1,...,m— 1. All we know about X is that E[X] > g(m),
and that X is chosen independently of the past. It is clear that the particle will
always reach position 1 and the process terminates in that state. The interesting
question is, assuming that the particle starts at position n, what is the expected
number of steps before it reaches position 1? The reader may associate the
position of the particle with the size of the problem in a recursive call of the
Find algorithm. Although we have more information about the distribution of
X in the case of Find’s analysis, it turns out that the bound on the expected size
of the residual problem suffices for proving the following result.

Thgorem 13: Let T be the random variable denoting the number of steps in
which the particle reaches the position 1. Then, E[T] < [ dx/g(x).

PROOF: The proof is by induction on n; let us suppose the theorem holds for

values of m smaller than n. Let f(m) = [["dx/g(x) for m > 1. We wish to show
that E[T] < f(n).
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Consider the first step, during which the particle proceeds from position n to
position n — X, where X is chosen from a distribution for which E[X] >"g(n).
We have

E[T] < 1+E[f(n -—X)] (1.9)
= 1+E[ / / A (1.10)
1 —x 8()

= 1+f(n) —E[/ D (1.11)

n—X g(Y)

n dy
< 14+ f(n —E/ — 1.12
TR (1.12)
= 14+ f(n ELX] (1.13)

g(n)

< f(n. (1.14)
The inequality (1.12) follows from the assumption that g(y) is non-decreasing,
while (1.14) follows from the lower bound on E[X]. O

Exercise 1.6: If X were to range over all integers having value at most m—1 (possibly
including negative integers), how would the statement and proof of Theorem 1.3
change?

For the Find algorithm, we can show (following the analysis of Problem 1.9)
that g(m) > m/4. We may then apply the above theorem to bound the expected
number of recursive calls to Find by 4Inn.

Exercise 1.7: What prevents us from using Theorem 1.3 to bound the expected
number of levels of recursion in the RandQS algorithm?

1.5. Computation Model and Complexity Classes

In this section we discuss models of computation used in this book, and follow
this with a review of complexity classes.

1.5.1. RAMs and Turing Machines

Following common practice, throughout this book we use the Turing machine
model to discuss complexity-theory issues. As is common, however, we switch to
the RAM (random access machine) as the model of computation when describ-
ing and analyzing algorithms (except in the study of parallel and distributed
algorithms in Chapter 12, where we define a version of the RAM model for
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machines working in parallel). We begin by defining the Turing machine, which
is an abstract model of an algorithm.

» Definition 1.2: A deterministic Turing machine is a quadruple M = (S,Z,9,s).
Here S is a finite set of states, of which s € S is the machine’s initial state. The
machine uses a finite set of symbols, denoted Z; this set includes special symbols
BLANK and FIRST. The function & is the transition function of the Turing machine,
mapping S X T to (S U {HALT,YESNO}) XZ X {«,—,sTAY}. The machine has
three halting states HALT (the halting state), YES (the accepting state), and No (the
rejecting state) (these are states, but formally not in S).

The input to the Turing machine is generally thought of as being written on
a tape; unless otherwise specified, the machine may read from and write on this
tape. We assume that HALT, YES, and No, as well as the symbols «, —, and STAY,
are not in S U Y. The machine begins in the initial state s with its cursor at the
first symbol of the input x (i.e., the left end of the tape); this symbol is always
FIRST. The rest of the input is a string of finite length from (X\{BLANK, FIRST})";
the left-most BLANK on the tape identifies the end of the input string.

The transition function dictates the actions of the machine, and may be
thought of as its program. In each step, the machine reads the symbol « of the
input currently pointed to by the cursor; based on this symbol and the current
state of the machine, it chooses a next state, a symbol f to be overwritten on
« and a cursor motion direction from {«,—,sTAY} (here « and — specify a
motion by one step to the left and right, respectively, while STAY specifies that
the cursor remain in its present position). The transition function is designed
to ensure that the cursor never falls off the left end of the input, identified by
FIRST. The machine may of course overwrite the BLANK symbol.

If the machine halts in the YES state, we say that it has accepted the input x.
If the machine halts in the No state, we say that it has rejected the input x. The
third halting state, HALT, is for the computation of functions whose range is not
Boolean; in such cases, the output of the function computation is written onto
the tape. An algorithm corresponds to a Turing machine that always halts.

A probabilistic Turing machine is a Turing machine augmented with the ability
to generate an unbiased coin flip in one step. It corresponds to a randomized
algorithm. On any input x, a probabilistic Turing machine accepts x with some
probability, and we study this probability.

In the light of these definitions, we may speak of an algorithm accepting or
rejecting an input (we visualize the Turing machine underlying the algorithm as
accepting or rejecting), and similarly speak of a randomized algorithm accepting
or rejecting an input with some probability.

In the RAM model, we have a machine that can perform the following types
of operations involving registers and main memory: input-output operations,
memory-register transfers, indirect addressing, branching, and arithmetic opera-
tions, Egch register or memory location may hold an integer that can be accessed
as a umt, but an algorithm has no access to the representation of the number.
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The arithmetic instructions permitted are +,—, X, /. In addition, an algorithm
can compare two numbers, and evaluate the square root of a positive number.

Two types of RAM models are defined based on the cost used for measuring
the running time of a program. In the unit-cost RAM (sometimes also called the
uniform RAM), each instruction can be performed in one time step. This model
is believed to be much too powerful since there is no known polynomial-time
simulation of this model by Turing machines. This situation arises because
the unit-cost RAM, unlike the more restricted Turing machine, is able to use
multiplication to quickly compute extremely large integers. However, if we
disallow all arithmetic operations besides addition and subtraction, then it is
possible to show that the resulting model is equivalent to Turing machines under
polynomial-time simulations.

A more realistic version of the RAM is the so-called log-cost RAM where each
instruction requires time proportional to the logarithm of the size of its operands.
It turns out that the log-cost RAM with the complete arithmetic instruction set
is equivalent to Turing machines under polynomial-time simulations.

For simplicity, we will work with the general unit-cost RAM model. At the
same time, we will avoid misuse of its power by ensuring that in all algorithms
under consideration the size of the operands is polynomially bounded in the
input size. Thus, our algorithm can be transformed to the log-cost RAM model
with only a small (logarithmic in the input size) multiplicative slow-down in the
running time. We also assume that the RAM can in a single step choose an
element uniformly at random from a set of cardinality polynomial in the size of
the problem input. Standard texts on automata and complexity (sec the Notes
section) give proofs of the following basic fact.

Proposition 1.4: Any Turing machine computation of length polynomial in the size
of the input can be simulated by a RAM computation of length polynomial in the
size of the input. Any RAM computation of length polynomial in the size of the
input can be simulated by a Turing machine computation of length polynomial in
the size of the input.

1.5.2. Complexity Classes

We now define some basic complexity classes focusing on those involving ran-
domized algorithms. For these definitions, the underlying model of computation
is assumed to be the Turing machine, but by the preceding discussion it could
be substituted by a log-cost RAM or the restricted form of the unit-cost RAM.

In complexity theory, it is common to concentrate on the decision problem
derived from some hard optimization problem. This enables the development
of an elegant theoretical framework, and the decision problem is usually not
significantly different in structure from its optimization counterpart. For in-
stance, consider the satisfiability problem, in which an instance consists of a set
of clauses in conjunctive normal form (CNF). Because the satisfiability problem
appears at various points in this book, we define some terminology relating
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to it. The Boolean inputs are called variables, which may appear in either
uncomplemented or complemented form in a clause. The uncomplemented or
complemented variables in a clause are known as literals (respectively, unnegated
and negated literals). A clause is said to be satisfied if at least one of the literals
in it is TRUE. A solution consists either of an assignment of Boolean values to the
variables that ensures that every clause is satisfied (such an assignment is known
as a truth assignment), or a negative answer that it is not possible to assign
inputs so as to satisfy all the clauses simultaneously. The decision version of this
problem, commonly abbreviated SAT, seeks only a YES or NO answer depend-
ing on whether or not all the clauses can simultaneously be satisfied, without
demanding an assignment of values to the inputs (in case the answer is YES).

» Example 1.2: Consider the following instance of satisfiability:
(x1Vx2 Vv X )N (X3 VXV xs)A (X1 VX2V x4 V Xs).

In this example, there are three clauses. The first stipulates that either x; should
be TRUE, or x, should be FALSE, or x4 should be TRUE. The literal X, denotes
that one way of satisfying the first clause is to set x, FALSE. The first two clauses
have three literals each, while the third has four. The assignments x; = TRUE,
x3 = FALSE, and x5 = FALSE suffice to satisfy all the clauses (regardless of the
values assigned to x; and x4). Thus the solution to this instance for the decision
question (SAT) is YEs.

Any decision problem can be treated as a language recognition problem. Fix
a finite alphabet T, usually £ = {0, 1}, and let £* be the set of all possible strings
over this alphabet. Denote by |s| the length of a string s. A language L < ¥~
is any collection of strings over . The corresponding language recognition
problem is to decide whether a given string x in X" belongs to L. An algorithm
solves a language recognition problem for a specific language L by accepting
(output YES) any input string contained in L, and rejecting (output No) any input
string not contained in L. The SAT problem can easily be cast in the form of
a language recognition problem by devising a suitable encoding of formulas as
bit-strings.

A complexity class is a collection of languages all of whose recognition
problems can be solved under prescribed bounds on the computational resources.
We are primarily interested in various forms of efficient algorithms, where
efficient is defined as being polynomial time. Recall that an algorithm has
polynomial running time if it halts within n®V time on any input of length n.
The following definitions list some interesting complexity classes.

> l?eﬁnition 1.3: The class P consists of all languages L that have a polynomial-
time algorithm A4 such that for any input x € ~,

® x € L = A(x) accepts.
* x ¢ L = A(x) rejects.
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» Definition 1.4: The class NP consists of all languages L that have a polynomial-
time algorithm A such that for any input x € Z*, '

e x € L = 3y € T*, A(x,y) accepts, where |y} is bounded by a polynomial
in |x|.

e x ¢ L = VyeZX, A(x,y) rejects.

A useful view of P and NP is the following. The class P consists of all
languages L such that for any x in L a proof of the membership x in L
(represented by the string y) can be found and verified efficiently. On the other
hand, NP consists of all languages L such that for any x in L, a proof of the
membership of x in L can be verified efficiently. Obviously, P < NP, but it is
not known whether P = NP. If P = NP, the existence of an efficiently verifiable
proof implies that it is possible to actually find such a proof efficiently.

For any complexity class C, we define the complementary class co-C as the
set of languages whose complement is in the class C. That is,

co-C={L|Le€C}.

It is obvious that P = co-P and P = NP N co-NP. We do not know whether
P = NP N co-NP or whether NP = co-NP, although both statements are widely
believed to be false.

Likewise, we can define deterministic and non-deterministic complexity classes
for different bounds on the running time. Let exponential time denote a running
time which is 27 for some polynomial p(n) in the input size. Allowing expo-
nential time instead of polynomial time in Definitions 1.3 and 1.4 gives us the
complexity classes EXP and NEXP. Clearly, EXP = NEXP, but once again we
do not know whether this inclusion is strict. On the other hand, we do know
that if P = NP, then EXP = NEXP.

We can also define space complexity classes by leaving the running time
unconstrained and instead placing a bound on the space used by an algorithm.
In the case of Turing machines, the space used is determined by the number
of distinct positions on the tape that are scanned during an execution; for
RAMs, the space requirement is simply the number of words of memory
required by an algorithm. In Definitions 1.3 and 1.4, requiring polynomial
space instead of polynomial time yields the definition of the class PSPACE and
NPSPACE. A PSPACE algorithm may run for super-polynomial time. These
classes behave differently from the time complexity classes; for example, we
know that PSPACE = NPSPACE and PSPACE = co-PSPACE.

We next review the notions of polynomial reductions and completeness for a
complexity class.

» Definition 1.5: A polynomial reduction from a language L; € X" to a language
L, = T* is a function f : £ — X" such that:

1. There is a polynomial-time algorithm that computes f.
2. Forall x € I, x € L; if and only if f(x) € L,.

20

15 COMPUTATION MODEL AND COMPLEXITY CLASSES

Exercise 1.8: Show that if there is a polynomial reduction from L, to L,, then L, € P
implies that L, € P.

» Definition 1.6: A language L is NP-hard if, for all L’ € NP, there is a polynomial
reduction from L' to L.

Thus, if any NP-hard decision problem can be solved in polynomial time,
then so can all problems in NP.

» Definition 1.7: A language L is NP-complete if it is in NP and is NP-hard.

Intuitively the decision problems corresponding to NP-complete languages
are the “hardest” problems in NP. Note that the notion of NP-completeness
applies only to decision problems; the optimization problem corresponding to an
NP-complete decision problem is VP-hard, but is not NP-complete because it is
not in VP by definition. As with NP, the notions of hardness and completeness
can be generalized to any class C, for an appropriate notion of reduction. Unless
otherwise specified, the default notion of a reduction is a polynomial reduction,
and this is typically used for defining hardness and completeness in complexity
classes that are a superset of P, such as PSPACE.

We generalize these classes to allow for randomized algorithms. The basic
idea is to replace the existential and universal quantifiers in the definition of NP
by probabilistic requirements.

» Definition 1.8: The class RP (for Randomized Polynomial time) consists of
all languages L that have a randomized algorithm A running in worst-case
polynomial time such that for any input x in X7,

e x € L = Pr[A(x) accepts] > %

e x ¢ L = Pr[A(x) accepts] = 0.

The choice of the bound on the error probability 1/2 is arbitrary. In fact, as
was observed in the case of the min-cut algorithm, independent repetitions of
‘Fhe algorithm can be used to go from the case where the probability of success
18 polynomially small to the case where the probability of error is exponentially
Small while changing only the degree of the polynomial that bounds the running
tlme.. Thus, the success probability can be changed to an inverse polynomial
function of the input size without significantly affecting the definition of RP.

Observe that an RP algorithm is a Monte Carlo algorithm that can err only
When x € L. This is referred to as one-sided error. The class co-RP consists of
languages that have polynomial-time randomized algorithms erring only in the
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case when x ¢ L. A problem belonging to both RP and co-RP can be solyed by
a randomized algorithm with zero-sided error, ie., a Las Vegas algorithm.

» Definition 1.9: The class ZPP (for Zero-error Probabilistic Polynomial time)
is the class of languages that have Las Vegas algorithms running in expected
polynomial time.

Exercise 1.9: Show that ZPP = RPN co-RP.

Consider now the class of problems that have randomized Monte Carlo
algorithms making two-sided errors.

» Definition 1.10: The class PP (for Probabilistic Polynomial time) consists of
all languages L that have a randomized algorithm A running in worst-case
polynomial time such that for any input x in £°,

e x € L = Pr[A(x) accepts] > —.

NN S

e x ¢ L = Pr[A(x) accepts] <

To reduce the error probability of a two-sided error algorithm, we can perform
several independent iterations on the same input and produce the output (accept
or reject) that occurs in the majority of these iterations. Unfortunately, the
definition of the class PP is rather weak: because we have no bound on how
far from 1/2 the probabilities are, it may not be possible to use a small number
of repetitions of an algorithm 4 with such two-sided error probability to obtain
an algorithm with significantly smaller error probability.

Exercise 1.10: Consider a randomized algorithm with two-sided error probabilities
as in the definition of PP. Show that a polynomial number of independent repetitions
of this algorithm need not suffice to reduce the error probability to 1/4. (Consider
the case where the error probability is 1/2 —1/2".)

A more useful class of two-sided error randomized algorithms corresponds
to the following complexity class.

» Definition 1.11: The class BPP (for Bounded-error Probabilistic Polynomial
time) consists of all languages L that have a randomized algorithm A running in
worst-case polynomial time such that for any input x in X7,

e x € L = Pr[A(x) accepts] >

e x ¢ L = Pr[A(x) accepts] <

Bl= W
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In a later chapter (see Problem 4.8) we will show that for this class of
algorithms the error probability can be reduced to 1/2" with only a polynomial
number of iterations. In fact, the probability bounds 3/4 and 1/4 can be changed
to 1/2 4+ 1/p(n) and 1/2 — 1/p(n), respectively, for any polynomially bounded
function p(n) without affecting this error reduction property or the definition of
the class BPP to a significant extent.

The reader is referred to Problems 1.11-1.14 for several basic relationships
between these complexity classes. There are several interesting open questions
regarding the relationships between these randomized complexity classes, for
example:

1. Is RP = co-RP?

2. Is RP = NPnco-NP? (Note that since co-RP < co-NP, showing that RP = co-RP
would imply RP = NP nco-NP.)

3. Is BPP < NP?

Although these classes are defined in terms of decision problems, they can be
used to classify the complexity of a broader class of problems such as search
or optimization problems. We will overload our notation a bit by using the
complexity class labels for referring to algorithms. For example, RandQS will
be called a ZPP algorithm.

Consider the following decision version of the min-cut problem: given a graph
G and integer K, verify that the min-cut size in G equals K. Assume that we
have modified (by incorporating sufficiently many repetitions) the Monte Carlo
min-cut algorithm to reduce its probability of error below 1/4. This algorithm
can solve the decision problem by computing a cut value k and comparing it
with K. This gives a BPP algorithm. In the case where K is indeed the min-cut
value, the algorithm may not come up with the right value and, hence, may
reject the input. Conversely, if the min-cut value is smaller than K, the algorithm
may only find cuts of size K and, hence, may accept the input.

We may modify this decision problem: given G and K, verify that the min-cut
size in G is at most K. Now, the algorithm described above translates into an
RP algorithm for this problem. In the case where the actual min-cut size C is
larger than K, the algorithm will never accept the input. This is because it can
only find cuts of size k no smaller than C and hence greater than K.

Notes

The ideas underlying randomized algorithms can be traced back to Monte Carlo
methods used in numerical analysis, statistical physics, and simulation. In the con-
text of computability theory, the notion of a probabilistic Turing machine was proposed
by de Leeuw, Moore, Shannon, and Shapiro [122] and further explored in the pioneering
work of Rabin [340] and Gill [166]. Berlekamp [57], Rabin [341}, and Solovay and
Strassen [382] gave early examples of concrete randomized algorithms. Rabin [341] pro-
posed randomized algorithms for problems in computational geometry and in number

i ‘,theory~ Around the same time, Solovay and Strassen [382] gave a randomized Monte
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Carlo algorithm for testing for primality; this problem is explored further in Chapter 14,
as is the randomized algorithm for factoring polynomials due to Berlekamp [571.

In the last twenty years, the array of techniques for devising and analyzing randomized
algorithms has grown. We develop these techniques in the chapters to follow. Karp [243],
Maffioli, Speranza, and Vercellis [289], and Welsh [415] give excellent surveys of ran-
domized algorithms. Johnson [220] surveys the probabilistic (or “average-case”) analysis
of algorithms (sometimes also referred to as “distributional complexity™), contrasting it
with randomized algorithms surveyed in his following bulletin [221].

Our RandQS algorithm is based on Hoare’s algorithm [201]. The min-cut algorithm
of Section 1.1, together with many variations and extensions, is due to Karger [231].

Monte Carlo methods have been popular in the sciences for over a hundred years now.
The classic experiment on approximating the value of 7 by dropping needles on a sheet
of paper with parallel lines is described in an eighteenth-century paper by Buffon [86]
(see also Hall [190]). The origin of the modern theory of Monte Carlo methods in the
physical sciences is widely attributed to Ulam, von Neumann, and Fermi [116]. The
term Las Vegas algorithm was introduced by Babai [37)], although he uses the term na
slightly different sense. Our usage conforms to the currently accepted notion of a Las
Vegas algorithm.

An important issue, alluded to in the discussion following the analysis of RandQS but
otherwise not covered in detail in this book, is the generation of random samples from
various types of distributions. First, there is the question of generating randomness within
the inherently deterministic computers that will implement our randomized algorithms.
This leads into the area of pseudo-random number generation, which is surveyed in the
article by Boppana and Hirschfeld [73] and in Knuth’s book [259]. Even if we assume
that a source of truly random bits is available, there is the issue of converting this into
the various types of distributions that may be required in randomized algorithms (for
example, see Problems 1.2 and 1.3). This problem is studied in the context of Monte
Carlo simulations, for example in the work of von Neumann [409, 410], and Knuth [259]
covers this in great detail. A comprehensive study of this important family of problems
in terms of its computational complexity was undertaken by Knuth and Yao [264].
The complexity of random sampling of combinatorial structures, such as graphs with
specified properties, has been studied by Pruhs and Manber [338]; as discussed in
Chapter 11, the problem of counting the number of combinatorial structures with
specified properties, often a difficult computational problem, can sometimes be reduced
to random sampling.

The idea of using independent iterations to reduce the error probability of Monte
Carlo algorithms has an analog for Las Vegas algorithms. Alt, Guibas, Mehlhorn, Karp,
and Wigderson [25] study the possibility of reducing the probability that the running
time of a Las Vegas algorithm substantially exceeds its expected value by employing
the following strategy: choose a sequence (T;) and use independent iterations of the
Las Vegas algorithm, aborting the ith iteration in T; steps, until one of the iterations
terminates successfully within the allotted time. These results were strengthened by Luby,
Sinclair, and Zuckerman [286], who also considered the minimization of the expected
total running time of such strategies.

The material of Section 1.3 is drawn from Paterson and Yao [329]. The Find algo-
rithm described in Section 1.4 is due to Hoare [200]. Theorem 1.3 is given in a paper by
Karp, Upfal and Wigderson [250]. Karp [244] gives a number of additional results on
probabilistic recurrence relations.
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PROBLEMS

The reader is referred to introductory texts on algorithms and complexity such
as those by Aho, Hopcroft, and Ullman [5, 6] and Papadimitriou [326] for more
details on the Turing machine model and the RAM model. It is known, for in-
stance, that sorting n numbers requires Q(rnlogn) operations in the RAM model of
computation. The books by Bovet and Crescenzi {81] and by Papadimitriou [326]
contain a more detailed treatment of the complexity classes described in this chapter.

Problems

1.1 (Due to J. von Neumann [409].)
(a) Suppose you are given a coin for which the probability of HEADS, say p, is
unknown. How can you use this coin to generate unbiased (i.e., Pr[HEADS] =
Pr[TAILS] = 1/2) coin-flips? Give a scheme for which the expected number of
fiips of the biased coin for extracting one unbiased coin-flip is no more than
1/[p(1 — p)]. (Hint : Consider two consecutive flips of the biased coin.)

(b) Devise an extension of the scheme that extracts the largest possible
number of independent, unbiased coin-flips from a given number of flips of
the biased coin.

1.2 (Due to D.E. Knuth and A. C-C. Yao [264].)
(a) Suppose you are provided with a source of unbiased random bits. Explain
how you will use this to generate uniform samples from the setS = {0,....n—
1}. Determine the expected number of random bits required by your sampling
algorithm.

(b) What is the worst-case number of random bits required by your sampling
algorithm? Consider the case when n is a power of 2, as well as the case
when it is not.

(c) Solve (a) and (b) when, instead of unbiased random bits, you are required
to use as the source of randomness uniform random samples from the set
{0,...,p — 1}; consider the case when n is a power of p, as well as the case
when it is not.

1.3  (Due to D.E. Knuth and A. C-C. Yao [264].) Suppose you are provided with a
source of unbiased random bits. Provide efficient (in terms of expected running
time and expected number of random bits used) schemes for generating
samples from the distribution over the set {2,3,...,12} induced by rolling two
unbiased dice and taking the sum of their outcomes.

14 (a) Suppose you are required to generate a random permutation of size n.

Assuming that you have access to a source of independent and unbiased
random bits, suggest a method for generating random permutations of size
n. Efficiency is measured in terms of both time and number of random bits.
What lower bounds can you prove for this task?

(P) Consider the following method for generating a random permutation of
Sllze'n. 'PICk n random values Xi, ..., X, independently from the uniform
distribution over the interval [0.1). Now, the permutation that orders the
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random variables in ascending order is claimed to be a random permutation,
and it can be determined by sorting the random values. Is the claim correct?
How efficient is this scheme?

(c) Consider the following “lazy” implementation of the scheme suggested
in {b). The binary representation of the fraction X; is a sequence of unbiased
and independent random bits. At any given stage of the sorting algorithm, we
would have chosen only as many bits of each X; as necessary to resolve all
the comparisons performed up to that point. When comparing X; to X;, if the
current prefixes of their binary expansions do not determine the outcome of
the comparisons, then we extend their prefixes by choosing further random
bits until this happens. Compute tight bounds on the expected number of
random bits used by this implementation.

Consider the problem of using a source of unbiased random bits to generate
samples from the set S = {0,...,n — 1} such that the element j is chosen with
probability p;. Show how to perform this sampling using O(log n) random bits
per sample, regardless of the values of p;. Use the result from part (c) of
Problem 1.4.

Consider a sequence of n flips of an unbiased coin. Let H; denote the absolute
value of the excess of the number of HEADS over the number of TAILS seen
in the first i flips. Define H = max; H;. Show that E[H;] = G(\/f), and that
E[H] = G)(\/E).

Suppose we choose a permutation m of the ordered set N = {1,2,...n}
uniformly at random from the space of all permutations of N. Let L() denote
the length of the longest increasing subsequence in permutation .

(a) For large n and some positive constant ¢, prove that E[L(m)] > cﬁ.
(b) Is the bound in (a) tight?

Consider adapting the min-cut algorithm of Section 1.1 to the problem of
finding an s-t min-cut in an undirected graph. In this problem, we are given
an undirected graph G together with two distinguished vertices s and t. An s-t
cut is a set of edges whose removal from G disconnects s from t; we seek an
s-t cut of minimum cardinality. As the algorithm proceeds, the vertex s may
get amalgamated into a new vertex as a resuit of an edge being contracted,
we call this vertex the s-vertex (initially the s-vertex is s itself). Similarly,
we have a t-vertex. As we run the contraction algorithm, we ensure that we
never contract an edge between the s-vertex and the t-vertex.

(a) Show that there are graphs in which the probability that this algorithm
finds an s-t min-cut is exponentially small.

(b) How large can the number of s-t min-cuts in an instance be?
Consider the Find algorithm described in Section 1.4 for selecting the kth

smaliest of a set S of n elements. Show that the algorithm finds the kth
smallest element in S in expected time O(n).

Consider the setting of Example 1.1. Show that the probability that no sailor
returns to her own cabin approaches 1/e as the number of sailors grows
large.
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PROBLEMS

Verify the following inclusions:

P< RP < NP < PSPACE < EXP < NEXP.
It is not known whether these inclusions are strict.
Verify the following inclusions:

RP < BPP < PP.

It is not known whether these inclusions are strict.
Show that PP = co-PP and BPP = co-BPP.
Show that NP = PP < PSPACE.
(Due to K-I. Ko [265].) Show that NP = BPP implies NP = RP.
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