Graph Algorithms

I. Shortest paths

- D = (V, A) directed graph, $s, t \in V$.
- A walk is a sequence $P = (v_0, a_1, v_1, \dots, a_k, v_k), k \ge 0$, where a_i is an arc from v_{i-1} to v_i , for $i = 1, \dots, k$.
- *P* is a *path*, if $v_0, ..., v_k$ are all different.
- If $s = v_0$ and $t = v_k$, *P* is a *s*-*t* walk resp. *s*-*t* path of length k (i.e., each arc has length 1).
- The *distance* from s to t is the minimum length of any s-t path (and $+\infty$ if no s-t path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

 $\begin{array}{ll} \textit{Initialization: } V_0 = \{s\} \\ \textit{Iteration:} & V_{i+1} = \{v \in V \setminus (V_0 \cup V_1 \cup \dots \cup V_i) \mid (u,v) \in A, \text{ for some } u \in V_i\}, \\ & \text{until } V_{i+1} = \emptyset. \end{array}$

Running time: O(|A|)

- *V_i* is the set of nodes with distance *i* from *s*.
- The algorithm computes shortest paths from *s* to all reachable nodes.
- Can be described by a directed tree T = (V', A') with root *s* such that each *u*-*v* path in *T* is a shortest *s*-*t* path in *D*.

Shortest paths with non-negative lengths

- Length function $I : A \to \mathbb{Q}_+ = \{x \in \mathbb{Q} \mid x \ge 0\}$
- For a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ define $I(P) = \sum_{i=1}^k I(a_i)$.

Algorithm (Dijkstra 1959)

 $\begin{array}{ll} \textit{Initialization: } U = V, f(s) = 0, f(v) = \infty, \mbox{ for } v \in V \setminus \{s\} \\ \textit{Iteration:} & \mbox{Find } u \in U \mbox{ with } f(u) = \min\{f(v) \mid v \in U\}. \\ & \mbox{ For all } a = (u, v) \in A \mbox{ with } f(v) > f(u) + l(a) \mbox{ let } f(v) = f(u) + l(a). \\ & \mbox{ Let } U \leftarrow U \setminus \{u\}, \mbox{ until } U = \emptyset. \end{array}$

Upon termination, f(v) gives the length of a shortest path from *s* to *v*.

Running time: $O(|V|^2)$ (can be improved to $O(|A| + |V| \log |V|)$.)

Application: Longest common subsequence

- Sequences $a = a_1, \dots, a_m$ and $b = b_1, \dots, b_n$
- Find the longest common subsequence of *a* and *b* (obtained by removing symbols in *a* or *b*).

Modeling as a shortest path problem

- Grid graph with nodes $(i, j), 0 \le i \le m, 0 \le j \le n$.
- Horizontal and vertical arcs of length 1.
- Diagonal arcs ((i-1, j-1), (i, j)) of length 0, if $a_i = b_j$.

The diagonal arcs on a shortest path from (0,0) to (m, n) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions $I : A \rightarrow \mathbb{Q}$.
- A *directed circuit* is a walk $P = (v_0, a_1, v_1, ..., a_k, v_k)$ with $k \ge 1$ and $v_0 = v_k$ such that $v_1, ..., v_k$ and $a_1, ..., a_k$ are all different.
- If *D* = (*V*, *A*) contains a directed circuit of negative length, there exist *s*-*t* walks of arbitrary small negative length.

Proposition

Let D = (V, A) be a directed graph without circuits of negative length. For any $s, t \in V$ for which there exists at least one *s*-*t* walk, there exists a shortest *s*-*t* walk, which is a path.

Shortest paths with arbitrary lengths

 $D=(V,A),n=\big|V\big|,I:A\to\mathbb{Q}.$

Algorithm (Bellman-Ford 1956/58)

Compute $f_0, ..., f_n : V \to \mathbb{R} \cup \{\infty\}$ in the following way:

Initialization: $f_0(s) = 0$, $f_0(v) = \infty$, for $v \in V \setminus \{s\}$ Iteration: For k = 1, ..., n and all $v \in V$: $f_k(v) = \min\{f_{k-1}(v), \min_{(u,v) \in A}(f_{k-1}(u) + I(u,v))\}$

Running time: O(|V||A|)

Properties

• For each k = 0, ..., n and each $v \in V$:

 $f_k(v) = \min\{l(P) \mid P \text{ is an } s \cdot v \text{ walk traversing at most } k \text{ arcs}\}$

(by induction)

• If *D* contains no circuits of negative length, $f_{n-1}(v)$ is the length of a shortest path from *s* to *v*.

Finding an explicit shortest path

- When computing $f_0, ..., f_n$ determine a predecessor function $p: V \to V$ by setting p(v) = u whenever $f_{k+1}(v) = f_k(u) + I(u, v)$.
- At termination, $v, p(v), p(p(v)), \dots, s$ gives the reverse of a shortest s v path.

Theorem

Given $D = (V, A), s, t \in V$ and $I : A \to \mathbb{Q}$ such that D contains no circuit of negative length, a shortest s-t path can be found in time O(|V||A|).

Remark

D contains a circuit of negative length reachable from *s* if and only if $f_n(v) \neq f_{n-1}(v)$, for some $v \in V$.

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem

Input: Directed graph D = (V, A), $s, t \in V$, $I : A \to \mathbb{Z}$, $L \in \mathbb{Z}$ *Question:* Does there exist an *s*-*t* path *P* with $I(P) \leq L$?

is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete. The longest path problem with non-negative lengths is NP-complete.

Application: Knapsack problem

• Knapsack, volume 8, 5 articles

Article i	Volume <i>a_i</i>	Value <i>c</i> i	
1	5	4	
2	3	7	
3	2	3	
4	2	5	
5	1	4	

• Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

• Linear 0-1 model

 $\max\{4x_1 + 7x_2 + 3x_3 + 5x_4 + 4x_5 \mid 5x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 \le 8, x_1, \dots, x_5 \in \{0, 1\}\}$

- Shortest path model
 - Directed graph with nodes $(i, x), 0 \le i \le 6, 0 \le x \le 8$.
 - Arcs from (i 1, x) to (i, x) resp. $(i, x + a_i)$ of length 0 resp. $-c_i$, for $0 \le i \le 5$.
 - Arcs from (5, x) to (6, 8) of length 0, for $0 \le x \le 6$.
 - A shortest path from (0,0) to (6,8) gives an optimal solution.

→ pseudo-polynomial algorithm

II. Network flows

- Network
 - Directed graph G = (V, E)
 - Source $s \in V$, sink $t \in V$
 - Edge capacities cap : $E \to \mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$
- Flow: $f: E \to \mathbb{R}_+$ satisfying
 - 1. Flow conservation constraints

$$\sum_{e: \mathsf{target}(e) = v} f(e) = \sum_{e: \mathsf{source}(e) = v} f(e), \text{ for all } v \in V \setminus \{s, t\}$$

2. Capacity constraints

 $0 \leq f(e) \leq \operatorname{cap}(e)$, for all $e \in E$

Maximum flow problem

- Excess at node v: $excess(v) = \sum_{e:target(e)=v} f(e) \sum_{e:source(e)=v} f(e)$
- If *f* is a flow, then excess(v) = 0, for all $v \in V \setminus \{s, t\}$.
- Value of a flow: val(f) = excess(t)
- Maximum flow problem:

 $\max\{\operatorname{val}(f) \mid f \text{ is a flow in } G\}$

• Can be seen as a linear programming problem.

Maximum flow problem (2)

Lemma

If *f* is a flow, then excess(t) = -excess(s).

Proof: We have

$$excess(s) + excess(t) = \sum_{v \in V} excess(v) = 0.$$

- First "=": excess(v) = 0, for $v \in V \setminus \{s, t\}$
- Second "=": For any edge *e* = (*v*, *w*), the flow through *e* appears twice in the sum, positively in excess(*w*) and negatively in excess(*v*).

Cuts

- A *cut* is a partition (S, T) of V, i.e., $T = V \setminus S$.
- (S, T) is an (s, t)-cut if $s \in S$ and $t \in T$.
- Capacity of the cut (S, T)

$$\operatorname{cap}(S,T) = \sum_{E \cap (S \times T)} \operatorname{cap}(e)$$

• A cut is saturated by f if f(e) = cap(e), for all $e \in E \cap (S \times T)$, and f(e) = 0, for all $e \in E \cap (T \times S)$.

Cuts (2)

Lemma

If f is a flow and (S, T) an (s, t)-cut, then

$$\operatorname{val}(f) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e) \leq \operatorname{cap}(S, T).$$

If *S* is saturated by *f*, then val(f) = cap(S, T).

Proof: We have

$$val(f) = -excess(s) = -\sum_{u \in S} excess(u) = \sum_{e \in E \cap (S \times T)} f(e) - \sum_{e \in E \cap (T \times S)} f(e)$$
$$\leq \sum_{e \in E \cap (S \times T)} cap(e) = cap(S)$$

For a saturated cut, the inequality is an equality.

Remarks

- A saturated cut proves the optimality of a flow.
- To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network G_f for a flow f in G = (V, E) indicates the capacity unused by f. It is defined as follows:

- *G_f* has the same node set as *G*.
- For every edge e = (v, w) in G, there are up to two edges e' and e'' in G_f :
 - 1. if $f(e) < \operatorname{cap}(e)$, there is an edge e' = (v, w) in G_f with residual capacity $r(e') = \operatorname{cap}(e) f(e)$.
 - 2. if f(e) > 0, there is an edge e'' = (w, v) in G_f with residual capacity r(e'') = f(e).

Theorem

Let *f* be an (s, t)-flow, let G_f be the residual network w.r.t. *f*, and let *S* be the set of all nodes reachable from *s* in G_f .

- 1. If $t \in S$, then *f* is not maximum.
- 2. If $t \notin S$, then S is a saturated cut and f is maximum.

Proof

If t is reachable from s in G_f , then f is not maximal.

- Let P be a (simple) path from s to t in G_f .
- Let δ be the minimum residual capacity of an edge in *P*.
 By definition, *r*(*e*) > 0, for all edges *e* in *G_f*. Therefore, δ > 0.
- Construct a flow f' of value val $(f) + \delta$:

$$f'(e) = \begin{cases} f(e) + \delta, & \text{if } e' \in P \\ f(e) - \delta, & \text{if } e'' \in P \\ f(e), & \text{if neither } e' \text{ nor } e'' \text{ belongs to } P. \end{cases}$$

• f' is a flow and $val(f') = val(f) + \delta$.

If *t* is not reachable from *s* in G_f , then *f* is maximal.

- Let *S* be the set of nodes reachable from *s* in *G*_{*f*}, and let $T = V \setminus S$.
- There is no edge (v, w) in G_f with $v \in S$ and $w \in T$.
- Hence
 - $f(e) = \operatorname{cap}(e)$, for any $e \in E \cap (S \times T)$, and
 - f(e) = 0, for any $e \in E \cap (T \times S)$.
- Thus *S* is saturated and, by the Lemma, *f* is maximal.

Ford-Fulkerson Algorithm

- 1. Start with the zero flow, i.e., f(e) = 0, for all $e \in E$.
- 2. Construct the residual network G_f .
- 3. Check whether t is reachable from s in G_f .

- if not, stop.
- if yes, increase the flow along an *augmenting path*, and iterate.

Analysis

- Let |V| = n and |E| = m.
- Each iteration takes time O(n+m).
- If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

- Suppose capacities are integers, bounded by C.
- $v^* \stackrel{\text{def}}{=}$ value of maximum flow $\leq Cn$.
- All flows constructed are integral (proof by induction).
- Every augmentation increases flow value by at least 1.
- Running time $O((n+m)v^*) \rightsquigarrow pseudo-polynomial algorithm$

Edmonds-Karp Algorithm

- Compute a *shortest* augmenting path, i.e. with a minimum number of arcs.
- Apply breadth-first search (or Dijkstra's algorithm).
- Number of iterations is bound by nm, leads to an $O(nm^2)$ maximum flow algorithm.
- Works also for irrational capacities.

Max-Flow Min-Cut Theorem

Theorem

For a network (*V*, *E*, *s*, *t*) with capacities cap : $E \to \mathbb{R}_+$ the maximum value of a flow is equal to the minimum capacity of an (*s*, *t*)-cut:

$$\max\{\operatorname{val}(f) \mid f \text{ is a flow}\} = \min\{\operatorname{cap}(S, T) \mid (S, T) \text{ is an } (s, t) \text{-cut}\}$$

Corollary

For integer capacities cap : $E \to \mathbb{Z}_+$, there exists an integer-valued maximum flow $f : E \to \mathbb{Z}_+$.

III. Matching

- G = (V, E) undirected graph
- *Matching:* Subset of edges $M \subseteq E$, no two of which share an endpoint.
- Maximum matching: Matching of maximum cardinality
- Perfect matching: Every vertex in V is matched.

Augmenting paths

- Let *M* be a matching in G = (V, E).
- A path $P = (v_0, v_1, ..., v_t)$ in *G* is called *M*-augmenting if:
 - -t is odd,
 - $v_1 v_2, v_3 v_4, v_{t-2} v_{t-1} \in M,$
 - $v_0, v_t \notin \bigcup M = \bigcup_{e \in M} e.$
- If P is an M-augmenting path and E(P) the edge set of P, then

$$M' = M \bigtriangleup E(P) = (M \setminus E(P)) \cup (E(P) \setminus M)$$

is a matching in *G* of size |M'| = |M| + 1.

Berge's Theorem

Theorem (Berge'57)

Let *M* be a matching in the graph G = (V, E). Then either *M* is a maximum cardinality matching or there exists an *M*-augmenting path.

Generic Matching Algorithm

Initialization: $M \leftarrow \emptyset$ *Iteration:* If there exists an *M*-augmenting path *P*, replace $M \leftarrow M \triangle E(P)$.

 \rightsquigarrow how can one find an *M*-augmenting path?

- Difficult in general ~→ Edmonds' matching algorithm (Edmonds'65)
- Easy for bipartite graphs

Bipartite graphs

A graph G = (V, E) is *bipartite* if there exist $A, B \subseteq V$ with $A \cup B = V, A \cap B = \emptyset$ and each edge in *E* has one end in *A* and one end in *B*.

Proposition

A graph G = (V, E) is bipartite if and only if each circuit of G has even length.

Bipartite matching

Matching augmenting algorithm for bipartite graphs

Input: Bipartite graph $G = (A \cup B, E)$ with matching M. *Output:* Matching M' with |M'| > |M| or proof that no such matching exists. *Description:* Construct a directed graph D_M with the same node set as G. For each edge $e = \{a, b\}$ in G with $a \in A, b \in B$: if $e \in M$, there is the arc (b, a) in D_M . if $e \notin M$, there is the arc (a, b) in D_M . Let $A_M = A \setminus \bigcup M$ and $B_M = B \setminus \bigcup M$. *M*-augmenting paths in *G* correspond to directed paths in D_M starting in A_M and ending in B_M .

Theorem

A maximum-cardinality matching in a bipartite graph G = (V, E) can be found in time O(|V||E|).

Bipartite matching as a maximum flow problem

- Add a source *s* and edges (*s*, *a*) for $a \in A$, with capacity 1.
- Add a sink *t* and edges (b, t) for $b \in B$, with capacity 1.
- Direct edges in G from A to B, with capacity 1.

- Integral flows *f* correspond to matchings *M*, with val(f) = |M|.
- Ford-Fulkerson takes time O(nm), since $v^* \leq n$.
- Can be improved to $O(\sqrt{n}m)$.

Marriage theorem

Theorem (Hall)

A bipartite graph $G = (A \cup B, E)$, with |A| = |B| = n, has a perfect matching if and only if for all $B' \subseteq B$, $|B'| \leq |N(B')|$, where N(B') is the set of all neighbors of nodes in B'.

Proof

- Let (S, T) be an (s, t)-cut in the corresponding network.
- Let $A_S = A \cap S$, $A_T = A \cap T$, $B_S = B \cap S$, $B_T = B \cap T$.

$$cap(S, T) = \sum_{e \in E \cap S \times T} cap(e)$$

= $|A_T| + |B_S| + |N(B_T) \cap A_S|$
 $\geq |N(B_T) \cap A_T| + |N(B_T) \cap A_S| + |B_S|$
= $|N(B_T)| + |B_S|$
 $\geq |B_T| + |B_S| = |B| = n$

• By the max-flow min-cut theorem, the maximum flow is at least *n*.

König's theorem

- G = (V, E) undirected graph
- $C \subseteq V$ is a *vertex covering* if every edge of *G* has at least one end in *C*.
- Lemma: For any matching *M* and any vertex covering *C*, we have $|M| \leq |C|$.
- Theorem (König) For a bipartite graph G,

 $\max\{|M|: M \text{ a matching }\} = \min\{|C|: C \text{ a vertex covering }\}.$

Network connectivity

- G = (V, E) directed graph, $s, t \in V, s \neq t$ non-adjacent.
- **Theorem (Menger)** The maximum number of *arc-disjoint* paths from *s* to *t* equals the minimum number of arcs whose removal disconnects all paths from *s* to *t*.
- **Theorem (Menger)** The maximum number of *node-disjoint* paths from *s* to *t* equals the minimum number of nodes (different from *s* and *t*) whose removal disconnects all paths from *s* to *t*.

Duality in linear programming

• Primal problem

$$z_P = \max\{\mathbf{c}^{\mathsf{T}} x \mid Ax \le b, x \in \mathbb{R}^n\}$$
(P)

Dual problem

$$w_D = \min\{b^T u \mid A^T u = \mathbf{c}, u \ge 0\}$$
(D)

General form

	(P)			(D)	
min	c ^T x		max	и ^т b	
w.r.t.	$A_{i*}x \geq b_i$,	$i \in M_1$	w.r.t	$u_i \ge 0$,	$i \in M_1$
	$A_{i*}x \leq b_i,$	$i \in M_2$		$u_i \leq 0$,	$i \in M_2$
	$A_{i*}x=b_i,$	$i \in M_3$		<i>u_i</i> free,	$i \in M_3$
	$x_j \ge 0$,	$j \in N_1$		$(A_{*j})^T u \leq c_j,$	$j \in N_1$
	$x_j \leq 0$,	$j \in N_2$		$(A_{*j})^T u \geq c_j,$	$j \in N_2$
	<i>x_j</i> free,	$j \in N_3$		$(\boldsymbol{A}_{*j})^T \boldsymbol{U} = \boldsymbol{C}_j,$	$j \in N_3$

Duality theorems

• Weak duality If x^* is primal and u^* is dual feasible, then

$$c^T x^* \leq z_P \leq w_D \leq b^T u^*.$$

- Strong duality If both (P) and (D) have a finite optimum, then $z_P = w_D$.
- Only four possibilities
 - 1. z_P and w_D are both finite and equal.
 - 2. $z_P = +\infty$ and (D) is infeasible.
 - 3. $w_D = -\infty$ and (P) is infeasible.
 - 4. (P) and (D) are both infeasible.

Maximum flow and duality

Primal problem

$$\begin{array}{ll} \max & \sum_{e: \text{source}(e) = s} x_e - \sum_{e: \text{target}(e) = s} x_e \\ \text{s.t.} & \sum_{e: \text{target}(e) = v} x_e - \sum_{e: \text{source}(e) = v} x_e = 0, \quad \forall v \in V \setminus \{s, t\} \\ & 0 \leq x_e \leq c_e, \qquad \quad \forall e \in E \end{array}$$

• Dual problem

$$\begin{array}{ll} \min & \sum_{e \in E} c_e y_e \\ \text{s.t.} & z_w - z_v + y_e \geq 0, \quad \forall e = (v, w) \in E \\ & z_s = 1, z_t = 0 \\ & y_e \geq 0, \qquad \forall e \in E \end{array}$$

Maximum flow and duality (2)

- Let (y^*, z^*) be an optimal solution of the dual.
- Define $S = \{v \in V \mid z_v^* > 0\}$ and $T = V \setminus S$.
- (S, T) is a minimum cut.
- · Max-flow min-cut theorem is a special case of linear programming duality.

Total unimodularity

- A matrix A is totally unimodular if each subdeterminant of A is 0, +1 or -1.
- Theorem (Hoffman and Kruskal) A ∈ Z^{m×n} is totally unimodular iff the polyhedron P = {x ∈ Rⁿ | Ax ≤ b, x ≥ 0} is integral, i.e., P = conv(P ∩ Zⁿ), for any b ∈ Z^m.
- Corollary $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff for any $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$ both optima in the LP duality equation

$$\max\{c^T x \mid Ax \leq b, x \geq 0\} = \{\min b^T u \mid A^T u \geq c, u \geq 0\}$$

are attained by integral vectors (if they are finite).

• Proposition The constraint matrix A arising in a maximum flow problem is totally unimodular.

Matching and linear programming

- G = (V, E) undirected graph, $M \subseteq E$ matching
- Incidence vector: $\chi^M : E \to \mathbb{R}, \ \chi^M(e) = \begin{cases} 1, & \text{if } e \in M, \\ 0, & \text{if } e \notin M. \end{cases}$
- Maximum matching as an integer linear program

$$\max\{\sum_{e\in E} x_e \mid \sum_{e\ni v} x_e \leq 1, \forall v \in V, \ x_e \in \{0,1\}, \forall e \in E\}$$

• For bipartite graphs the constraint matrix is totally unimodular ~> linear program

$$\max\{\sum_{e\in E} x_e \mid \sum_{e\ni v} x_e \leq 1, \forall v \in V, \ x_e \geq 0, \forall e \in E\}$$

• Dual linear program

$$\min\{\sum_{v\in V} y_v \mid y_v + y_w \ge 1, \forall e = \{v, w\} \in E, \ y_v \ge 0, \forall v \in V\}$$

→ minimum vertex cover

References

- K. Mehlhorn: Data Structures and Efficient Algorithms, Vol. 2: Graph Algorithms and NP-Completeness, Springer, 1986, http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html
- S. Krumke and H. Noltemeier: Graphentheoretische Konzepte und Algorithmen. Teubner, 2005
- A. Schrijver: A Course in Combinatorial Optimization, CWI Amsterdam, 2008, http://homepages.cwi. nl/~lex/files/dict.pdf
- R. K. Ahuja, T. L. Magnanti and J. L. Orlin: Network flows. Prentice Hall, 1993