
Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6001

Graph Algorithms
I. Shortest paths

• D = (V ,A) directed graph, s, t ∈ V .

• A walk is a sequence P = (v0,a1,v1, ... ,ak ,vk),k ≥ 0, where ai is an arc from vi−1 to vi , for i = 1, ... ,k .

• P is a path, if v0, ... ,vk are all different.

• If s = v0 and t = vk , P is a s-t walk resp. s-t path of length k (i.e., each arc has length 1).

• The distance from s to t is the minimum length of any s-t path (and +∞ if no s-t path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

Initialization: V0 = {s}
Iteration: Vi+1 = {v ∈ V \ (V0∪V1∪·· ·∪Vi) | (u,v) ∈ A, for some u ∈ Vi},

until Vi+1 = /0.

Running time: O(|A|)

• Vi is the set of nodes with distance i from s.

• The algorithm computes shortest paths from s to all reachable nodes.

• Can be described by a directed tree T = (V ′,A′) with root s such that each u-v path in T is a shortest s-t
path in D.

Shortest paths with non-negative lengths

• Length function l : A→Q+ = {x ∈Q | x ≥ 0}

• For a walk P = (v0,a1,v1, ... ,ak ,vk) define l(P) = ∑
k
i=1 l(ai).

Algorithm (Dijkstra 1959)

Initialization: U = V , f (s) = 0, f (v) = ∞, for v ∈ V \{s}
Iteration: Find u ∈ U with f (u) = min{f (v) | v ∈ U}.

For all a = (u,v) ∈ A with f (v) > f (u) + l(a) let f (v) = f (u) + l(a).
Let U← U \{u}, until U = /0.

Upon termination, f (v) gives the length of a shortest path from s to v .

Running time: O(|V |2) (can be improved to O(|A|+ |V | log |V |).)

Application: Longest common subsequence

• Sequences a = a1, ... ,am and b = b1, ... ,bn

• Find the longest common subsequence of a and b (obtained by removing symbols in a or b).

6002 Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50

Modeling as a shortest path problem

• Grid graph with nodes (i , j),0≤ i ≤m,0≤ j ≤ n.

• Horizontal and vertical arcs of length 1.

• Diagonal arcs ((i−1, j−1), (i , j)) of length 0, if ai = bj .

The diagonal arcs on a shortest path from (0,0) to (m,n) define a longest common subsequence.

Circuits of negative length

• Consider arbitrary length functions l : A→Q.

• A directed circuit is a walk P = (v0,a1,v1, ... ,ak ,vk) with k ≥ 1 and v0 = vk such that v1, ... ,vk and a1, ... ,ak

are all different.

• If D = (V ,A) contains a directed circuit of negative length, there exist s-t walks of arbitrary small negative
length.

Proposition
Let D = (V ,A) be a directed graph without circuits of negative length.
For any s, t ∈ V for which there exists at least one s-t walk, there exists a shortest s-t walk, which is a path.

Shortest paths with arbitrary lengths

D = (V ,A),n = |V |, l : A→Q.

Algorithm (Bellman-Ford 1956/58)

Compute f0, ... , fn : V → R∪{∞} in the following way:

Initialization: f0(s) = 0, f0(v) = ∞, for v ∈ V \{s}
Iteration: For k = 1, ... ,n and all v ∈ V :

fk (v) = min{fk−1(v),min(u,v)∈A(fk−1(u) + l(u,v))}

Running time: O(|V ||A|)

Properties

• For each k = 0, ... ,n and each v ∈ V :

fk (v) = min{l(P) | P is an s-v walk traversing at most k arcs}

(by induction)

• If D contains no circuits of negative length, fn−1(v) is the length of a shortest path from s to v .

Finding an explicit shortest path

• When computing f0, ... , fn determine a predecessor function p : V → V by setting p(v) = u whenever
fk+1(v) = fk (u) + l(u,v).

• At termination, v ,p(v),p(p(v)), ... ,s gives the reverse of a shortest s-v path.

Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6003

Theorem
Given D = (V ,A),s, t ∈ V and l : A→ Q such that D contains no circuit of negative length, a shortest s-t path
can be found in time O(|V ||A|).
Remark
D contains a circuit of negative length reachable from s if and only if fn(v) 6= fn−1(v), for some v ∈ V .

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem
The decision problem

Input: Directed graph D = (V ,A), s, t ∈ V , l : A→ Z, L ∈ Z
Question: Does there exist an s-t path P with l(P)≤ L?

is NP-complete.

Corollary
The shortest path problem with arbitrary lengths is NP-complete.
The longest path problem with non-negative lengths is NP-complete.

Application: Knapsack problem

• Knapsack, volume 8, 5 articles

Article i Volume ai Value ci

1 5 4
2 3 7
3 2 3
4 2 5
5 1 4

• Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

• Linear 0-1 model

max{4x1 + 7x2 + 3x3 + 5x4 + 4x5 | 5x1 + 3x2 + 2x3 + 2x4 + x5 ≤ 8,x1, ... ,x5 ∈ {0,1}}

• Shortest path model

– Directed graph with nodes (i ,x),0≤ i ≤ 6, 0≤ x ≤ 8.

– Arcs from (i−1,x) to (i ,x) resp. (i ,x + ai) of length 0 resp. −ci , for 0≤ i ≤ 5.

– Arcs from (5,x) to (6,8) of length 0, for 0≤ x ≤ 6.

– A shortest path from (0,0) to (6,8) gives an optimal solution.

 pseudo-polynomial algorithm

6004 Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50

II. Network flows

• Network

– Directed graph G = (V ,E)

– Source s ∈ V , sink t ∈ V

– Edge capacities cap : E → R+ = {x ∈ R | x ≥ 0}

• Flow: f : E → R+ satisfying

1. Flow conservation constraints

∑
e:target(e)=v

f (e) = ∑
e:source(e)=v

f (e), for all v ∈ V \{s, t}

2. Capacity constraints
0≤ f (e)≤ cap(e), for all e ∈ E

Maximum flow problem

• Excess at node v : excess(v) = ∑
e:target(e)=v

f (e)− ∑
e:source(e)=v

f (e)

• If f is a flow, then excess(v) = 0, for all v ∈ V \{s, t}.

• Value of a flow: val(f) def= excess(t)

• Maximum flow problem:
max{val(f) | f is a flow in G}

• Can be seen as a linear programming problem.

Maximum flow problem (2)

Lemma
If f is a flow, then excess(t) =−excess(s).

Proof: We have
excess(s) + excess(t) = ∑

v∈V
excess(v) = 0.

• First “=”: excess(v) = 0, for v ∈ V \{s, t}

• Second “=”: For any edge e = (v ,w), the flow through e appears twice in the sum, positively in excess(w)
and negatively in excess(v).

Cuts

• A cut is a partition (S,T) of V , i.e., T = V \S.

• (S,T) is an (s, t)-cut if s ∈ S and t ∈ T .

• Capacity of the cut (S,T)
cap(S,T) = ∑

E∩(S×T)

cap(e)

• A cut is saturated by f if f (e) = cap(e), for all e ∈ E ∩ (S×T), and f (e) = 0, for all e ∈ E ∩ (T ×S).

Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6005

Cuts (2)

Lemma
If f is a flow and (S,T) an (s, t)-cut, then

val(f) = ∑
e∈E∩(S×T)

f (e) − ∑
e∈E∩(T×S)

f (e) ≤ cap(S,T).

If S is saturated by f , then val(f) = cap(S,T).

Proof: We have

val(f) = −excess(s) = −∑
u∈S

excess(u) = ∑
e∈E∩(S×T)

f (e)− ∑
e∈E∩(T×S)

f (e)

≤ ∑
e∈E∩(S×T)

cap(e) = cap(S)

For a saturated cut, the inequality is an equality.

s t

1/0 1/1

2/12/2

1/1 s t

1/1 1/1

2/22/2

1/0

Remarks

• A saturated cut proves the optimality of a flow.

• To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network Gf for a flow f in G = (V ,E) indicates the capacity unused by f . It is defined as follows:

• Gf has the same node set as G.

• For every edge e = (v ,w) in G, there are up to two edges e′ and e′′ in Gf :

1. if f (e) < cap(e), there is an edge e′ = (v ,w) in Gf with residual capacity r (e′) = cap(e)− f (e).

2. if f (e) > 0, there is an edge e′′ = (w ,v) in Gf with residual capacity r (e′′) = f (e).

s t

2/1 2/2

2/12/2

1/1 s t

1 2

12

1
1

2

Theorem
Let f be an (s, t)-flow, let Gf be the residual network w.r.t. f , and let S be the set of all nodes reachable from s in
Gf .

6006 Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50

1. If t ∈ S, then f is not maximum.

2. If t 6∈ S, then S is a saturated cut and f is maximum.

Proof

If t is reachable from s in Gf , then f is not maximal.

• Let P be a (simple) path from s to t in Gf .

• Let δ be the minimum residual capacity of an edge in P.
By definition, r (e) > 0, for all edges e in Gf . Therefore, δ > 0.

• Construct a flow f ′ of value val(f) + δ:

f ′(e) =

f (e) + δ, if e′ ∈ P
f (e)−δ, if e′′ ∈ P
f (e), if neither e′ nor e′′ belongs to P.

• f ′ is a flow and val(f ′) = val(f) + δ.

Example

s t

2/1 2/2

2/12/2

1/1 s t

2/2 2/2

2/22/2

1/0

s t

1 2

12

1
1

1

If t is not reachable from s in Gf , then f is maximal.

• Let S be the set of nodes reachable from s in Gf , and let T = V \S.

• There is no edge (v ,w) in Gf with v ∈ S and w ∈ T .

• Hence

– f (e) = cap(e), for any e ∈ E ∩ (S×T), and

– f (e) = 0, for any e ∈ E ∩ (T ×S).

• Thus S is saturated and, by the Lemma, f is maximal.

Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., f (e) = 0, for all e ∈ E .

2. Construct the residual network Gf .

3. Check whether t is reachable from s in Gf .

Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6007

• if not, stop.

• if yes, increase the flow along an augmenting path, and iterate.

Analysis

• Let |V | = n and |E | = m.

• Each iteration takes time O(n + m).

• If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

• Suppose capacities are integers, bounded by C.

• v∗ def= value of maximum flow ≤ Cn.

• All flows constructed are integral (proof by induction).

• Every augmentation increases flow value by at least 1.

• Running time O((n + m)v∗) pseudo-polynomial algorithm

Edmonds-Karp Algorithm

• Compute a shortest augmenting path, i.e. with a minimum number of arcs.

• Apply breadth-first search (or Dijkstra’s algorithm).

• Number of iterations is bound by nm, leads to an O(nm2) maximum flow algorithm.

• Works also for irrational capacities.

Max-Flow Min-Cut Theorem

Theorem
For a network (V ,E ,s, t) with capacities cap : E → R+ the maximum value of a flow is equal to the minimum
capacity of an (s, t)-cut:

max{val(f) | f is a flow} = min{cap(S,T) | (S,T) is an (s, t)-cut}

Corollary
For integer capacities cap : E → Z+, there exists an integer-valued maximum flow f : E → Z+.

6008 Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50

III. Matching

• G = (V ,E) undirected graph

• Matching: Subset of edges M ⊆ E , no two of which share an endpoint.

• Maximum matching: Matching of maximum cardinality

• Perfect matching: Every vertex in V is matched.

Augmenting paths

• Let M be a matching in G = (V ,E).

• A path P = (v0,v1, ... ,vt) in G is called M-augmenting if:

– t is odd,

– v1v2,v3v4,vt−2vt−1 ∈M,

– v0,vt 6∈
⋃

M =
⋃

e∈M e.

• If P is an M-augmenting path and E(P) the edge set of P, then

M ′ = M4E(P) = (M \E(P)) ∪ (E(P)\M)

is a matching in G of size |M ′| = |M|+ 1.

Berge’s Theorem

Theorem (Berge’57)
Let M be a matching in the graph G = (V ,E). Then either M is a maximum cardinality matching or there exists
an M-augmenting path.

Generic Matching Algorithm

Initialization: M← /0

Iteration: If there exists an M-augmenting path P, replace M←M4E(P).

 how can one find an M-augmenting path?

• Difficult in general Edmonds’ matching algorithm (Edmonds’65)

• Easy for bipartite graphs

Bipartite graphs

A graph G = (V ,E) is bipartite if there exist A,B ⊆ V with A∪B = V ,A∩B = /0 and each edge in E has one end
in A and one end in B.

Proposition
A graph G = (V ,E) is bipartite if and only if each circuit of G has even length.

Bipartite matching

Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6009

Matching augmenting algorithm for bipartite graphs

Input: Bipartite graph G = (A∪B,E) with matching M.
Output: Matching M ′ with |M ′|> |M| or proof that no such matching exists.
Description: Construct a directed graph DM with the same node set as G.

For each edge e = {a,b} in G with a ∈ A,b ∈ B:
if e ∈M, there is the arc (b,a) in DM .
if e 6∈M, there is the arc (a,b) in DM .

Let AM = A\
⋃

M and BM = B \
⋃

M.
M-augmenting paths in G correspond to directed paths in DM

starting in AM and ending in BM .

Theorem
A maximum-cardinality matching in a bipartite graph G = (V ,E) can be found in time O(|V ||E |).

Bipartite matching as a maximum flow problem

• Add a source s and edges (s,a) for a ∈ A, with capacity 1.

• Add a sink t and edges (b, t) for b ∈ B, with capacity 1.

• Direct edges in G from A to B, with capacity 1.

• Integral flows f correspond to matchings M, with val(f) = |M|.

• Ford-Fulkerson takes time O(nm), since v∗ ≤ n.

• Can be improved to O(
√

n m).

Marriage theorem

Theorem (Hall)
A bipartite graph G = (A∪B,E), with |A| = |B| = n, has a perfect matching if and only if for all B′⊆B, |B′| ≤ |N(B′)|,
where N(B′) is the set of all neighbors of nodes in B′.

6010 Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50

Proof

• Let (S,T) be an (s, t)-cut in the corresponding network.

• Let AS = A∩S,AT = A∩T ,BS = B∩S,BT = B∩T .

cap(S,T) = ∑
e∈E∩S×T

cap(e)

= |AT |+ |BS|+ |N(BT)∩AS|
≥ |N(BT)∩AT |+ |N(BT)∩AS|+ |BS|
= |N(BT)|+ |BS|
≥ |BT |+ |BS| = |B| = n

• By the max-flow min-cut theorem, the maximum flow is at least n.

König’s theorem

• G = (V ,E) undirected graph

• C ⊆ V is a vertex covering if every edge of G has at least one end in C.

• Lemma: For any matching M and any vertex covering C, we have |M| ≤ |C|.

• Theorem (König) For a bipartite graph G,

max{|M| : M a matching } = min{|C| : C a vertex covering }.

Network connectivity

• G = (V ,E) directed graph, s, t ∈ V ,s 6= t non-adjacent.

• Theorem (Menger) The maximum number of arc-disjoint paths from s to t equals the minimum number
of arcs whose removal disconnects all paths from s to t .

• Theorem (Menger) The maximum number of node-disjoint paths from s to t equals the minimum number
of nodes (different from s and t) whose removal disconnects all paths from s to t .

Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6011

Duality in linear programming

• Primal problem
zP = max{cTx | Ax ≤ b,x ∈ Rn} (P)

• Dual problem
wD = min{bT u | AT u = c,u ≥ 0} (D)

General form

(P) (D)

min cT x max uT b
w.r.t. Ai∗x ≥ bi , i ∈M1 w.r.t ui ≥ 0, i ∈M1

Ai∗x ≤ bi , i ∈M2 ui ≤ 0, i ∈M2

Ai∗x = bi , i ∈M3 ui free, i ∈M3

xj ≥ 0, j ∈ N1 (A∗j)T u ≤ cj , j ∈ N1

xj ≤ 0, j ∈ N2 (A∗j)T u ≥ cj , j ∈ N2

xj free, j ∈ N3 (A∗j)T u = cj , j ∈ N3

Duality theorems

• Weak duality If x∗ is primal and u∗ is dual feasible, then

cT x∗ ≤ zP ≤ wD ≤ bT u∗.

• Strong duality If both (P) and (D) have a finite optimum, then zP = wD.

• Only four possibilities

1. zP and wD are both finite and equal.

2. zP = +∞ and (D) is infeasible.

3. wD =−∞ and (P) is infeasible.

4. (P) and (D) are both infeasible.

Maximum flow and duality

6012 Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50

• Primal problem

max ∑
e:source(e)=s

xe− ∑
e:target(e)=s

xe

s.t. ∑
e:target(e)=v

xe− ∑
e:source(e)=v

xe = 0, ∀v ∈ V \{s, t}

0≤ xe ≤ ce, ∀e ∈ E

• Dual problem

min ∑
e∈E

ceye

s.t. zw − zv + ye ≥ 0, ∀e = (v ,w) ∈ E

zs = 1,zt = 0

ye ≥ 0, ∀e ∈ E

Maximum flow and duality (2)

• Let (y∗,z∗) be an optimal solution of the dual.

• Define S = {v ∈ V | z∗v > 0} and T = V \S.

• (S,T) is a minimum cut.

• Max-flow min-cut theorem is a special case of linear programming duality.

Total unimodularity

• A matrix A is totally unimodular if each subdeterminant of A is 0,+1 or −1.

• Theorem (Hoffman and Kruskal) A ∈ Zm×n is totally unimodular iff the polyhedron P = {x ∈ Rn | Ax ≤
b,x ≥ 0} is integral, i.e., P = conv(P ∩Zn), for any b ∈ Zm.

• Corollary A ∈ Zm×n is totally unimodular iff for any b ∈ Zm,c ∈ Zn both optima in the LP duality equation

max{cT x | Ax ≤ b,x ≥ 0} = {minbT u | AT u ≥ c,u ≥ 0}

are attained by integral vectors (if they are finite).

• Proposition The constraint matrix A arising in a maximum flow problem is totally unimodular.

Matching and linear programming

• G = (V ,E) undirected graph, M ⊆ E matching

• Incidence vector: χM : E → R, χM (e) =

{
1, if e ∈M,
0, if e 6∈M.

• Maximum matching as an integer linear program

max{∑
e∈E

xe | ∑
e3v

xe ≤ 1,∀v ∈ V , xe ∈ {0,1},∀e ∈ E}

Algorithms WS 12/13: , by Y. Goldstein/K. Reinert, 11. Oktober 2013, 16:50 6013

• For bipartite graphs the constraint matrix is totally unimodular linear program

max{∑
e∈E

xe | ∑
e3v

xe ≤ 1,∀v ∈ V , xe ≥ 0,∀e ∈ E}

• Dual linear program

min{∑
v∈V

yv | yv + yw ≥ 1,∀e = {v ,w} ∈ E , yv ≥ 0,∀v ∈ V}

 minimum vertex cover

References

• K. Mehlhorn: Data Structures and Efficient Algorithms, Vol. 2: Graph Algorithms and NP-Completeness,
Springer, 1986, http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html

• S. Krumke and H. Noltemeier: Graphentheoretische Konzepte und Algorithmen. Teubner, 2005

• A. Schrijver: A Course in Combinatorial Optimization, CWI Amsterdam, 2008, http://homepages.cwi.
nl/~lex/files/dict.pdf

• R. K. Ahuja, T. L. Magnanti and J. L. Orlin: Network flows. Prentice Hall, 1993

