Graph Algorithms

I. Shortest paths

- $D=(V, A)$ directed graph, $s, t \in V$.
- A walk is a sequence $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right), k \geq 0$, where a_{i} is an arc from v_{i-1} to v_{i}, for $i=1, \ldots, k$.
- P is a path, if v_{0}, \ldots, v_{k} are all different.
- If $s=v_{0}$ and $t=v_{k}, P$ is a $s-t$ walk resp. s-t path of length k (i.e., each arc has length 1).
- The distance from s to t is the minimum length of any s - t path (and $+\infty$ if no $s-t$ path exists).

Shortest paths with unit lengths

Algorithm (Breadth-first search)

Initialization: $V_{0}=\{s\}$
Iteration: $\quad V_{i+1}=\left\{v \in V \backslash\left(V_{0} \cup V_{1} \cup \cdots \cup V_{i}\right) \mid(u, v) \in A\right.$, for some $\left.u \in V_{i}\right\}$, until $V_{i+1}=\emptyset$.

Running time: $O(|A|)$

- V_{i} is the set of nodes with distance i from s.
- The algorithm computes shortest paths from s to all reachable nodes.
- Can be described by a directed tree $T=\left(V^{\prime}, A^{\prime}\right)$ with root s such that each $u-v$ path in T is a shortest $s-t$ path in D.

Shortest paths with non-negative lengths

- Length function $/: A \rightarrow \mathbb{Q}_{+}=\{x \in \mathbb{Q} \mid x \geq 0\}$
- For a walk $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ define $I(P)=\sum_{i=1}^{k} I\left(a_{i}\right)$.

Algorithm (Dijkstra 1959)

Initialization: $U=V, f(s)=0, f(v)=\infty$, for $v \in V \backslash\{s\}$
Iteration: Find $u \in U$ with $f(u)=\min \{f(v) \mid v \in U\}$.
For all $a=(u, v) \in A$ with $f(v)>f(u)+I(a)$ let $f(v)=f(u)+I(a)$.
Let $U \leftarrow U \backslash\{u\}$, until $U=\emptyset$.

Upon termination, $f(v)$ gives the length of a shortest path from s to v.
Running time: $O\left(|V|^{2}\right)$ (can be improved to $O(|A|+|V| \log |V|)$.)

Application: Longest common subsequence

- Sequences $a=a_{1}, \ldots, a_{m}$ and $b=b_{1}, \ldots, b_{n}$
- Find the longest common subsequence of a and b (obtained by removing symbols in a or b).

Modeling as a shortest path problem

- Grid graph with nodes $(i, j), 0 \leq i \leq m, 0 \leq j \leq n$.
- Horizontal and vertical arcs of length 1.
- Diagonal arcs $((i-1, j-1),(i, j))$ of length 0 , if $a_{i}=b_{j}$.

The diagonal arcs on a shortest path from $(0,0)$ to (m, n) define a longest common subsequence.

Circuits of negative length

- Consider arbitrary length functions $I: A \rightarrow \mathbb{Q}$.
- A directed circuit is a walk $P=\left(v_{0}, a_{1}, v_{1}, \ldots, a_{k}, v_{k}\right)$ with $k \geq 1$ and $v_{0}=v_{k}$ such that v_{1}, \ldots, v_{k} and a_{1}, \ldots, a_{k} are all different.
- If $D=(V, A)$ contains a directed circuit of negative length, there exist s - t walks of arbitrary small negative length.

Proposition

Let $D=(V, A)$ be a directed graph without circuits of negative length.
For any $s, t \in V$ for which there exists at least one s-t walk, there exists a shortest s - t walk, which is a path.

Shortest paths with arbitrary lengths

$D=(V, A), n=|V|, I: A \rightarrow \mathbb{Q}$.

Algorithm (Bellman-Ford 1956/58)
Compute $f_{0}, \ldots, f_{n}: V \rightarrow \mathbb{R} \cup\{\infty\}$ in the following way:

Initialization: $f_{0}(s)=0, f_{0}(v)=\infty$, for $v \in V \backslash\{s\}$
Iteration: For $k=1, \ldots, n$ and all $v \in V$:

$$
f_{k}(v)=\min \left\{f_{k-1}(v), \min _{(u, v) \in A}\left(f_{k-1}(u)+l(u, v)\right)\right\}
$$

Running time: $O(|V||A|)$

Properties

- For each $k=0, \ldots, n$ and each $v \in V$:

$$
f_{k}(v)=\min \{I(P) \mid P \text { is an } s-v \text { walk traversing at most } k \text { arcs }\}
$$

(by induction)

- If D contains no circuits of negative length, $f_{n-1}(v)$ is the length of a shortest path from s to v.

Finding an explicit shortest path

- When computing f_{0}, \ldots, f_{n} determine a predecessor function $p: V \rightarrow V$ by setting $p(v)=u$ whenever $f_{k+1}(v)=f_{k}(u)+l(u, v)$.
- At termination, $v, p(v), p(p(v)), \ldots, s$ gives the reverse of a shortest $s-v$ path.

Theorem

Given $D=(V, A), s, t \in V$ and $I: A \rightarrow \mathbb{Q}$ such that D contains no circuit of negative length, a shortest s-t path can be found in time $O(|V \| A|)$.

Remark
D contains a circuit of negative length reachable from s if and only if $f_{n}(v) \neq f_{n-1}(v)$, for some $v \in V$.

NP-completeness

For directed graphs containing circuits of negative length, the problem becomes NP-complete:

Theorem

The decision problem

Input: Directed graph $D=(V, A), s, t \in V, I: A \rightarrow \mathbb{Z}, L \in \mathbb{Z}$
Question: Does there exist an s - t path P with $I(P) \leq L$?
is NP-complete.

Corollary

The shortest path problem with arbitrary lengths is NP-complete.
The longest path problem with non-negative lengths is NP-complete.

Application: Knapsack problem

- Knapsack, volume 8, 5 articles

Article i	Volume a_{i}	Value c_{i}
1	5	4
2	3	7
3	2	3
4	2	5
5	1	4

- Objective: Select articles fitting into the knapsack and maximizing the total value.

Possible models

- Linear 0-1 model

$$
\max \left\{4 x_{1}+7 x_{2}+3 x_{3}+5 x_{4}+4 x_{5} \mid 5 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}+x_{5} \leq 8, x_{1}, \ldots, x_{5} \in\{0,1\}\right\}
$$

- Shortest path model
- Directed graph with nodes $(i, x), 0 \leq i \leq 6,0 \leq x \leq 8$.
- Arcs from $(i-1, x)$ to (i, x) resp. $\left(i, x+a_{i}\right)$ of length 0 resp. $-c_{i}$, for $0 \leq i \leq 5$.
- Arcs from $(5, x)$ to $(6,8)$ of length 0 , for $0 \leq x \leq 6$.
- A shortest path from $(0,0)$ to $(6,8)$ gives an optimal solution.
\rightsquigarrow pseudo-polynomial algorithm

II. Network flows

- Network
- Directed graph $G=(V, E)$
- Source $s \in V$, sink $t \in V$
- Edge capacities cap : $E \rightarrow \mathbb{R}_{+}=\{x \in \mathbb{R} \mid x \geq 0\}$
- Flow: $f: E \rightarrow \mathbb{R}_{+}$satisfying

1. Flow conservation constraints

$$
\sum_{e: \operatorname{target}(e)=v} f(e)=\sum_{e: \operatorname{source}(e)=v} f(e), \text { for all } v \in V \backslash\{s, t\}
$$

2. Capacity constraints

$$
0 \leq f(e) \leq \operatorname{cap}(e), \text { for all } e \in E
$$

Maximum flow problem

- Excess at node $v: \operatorname{excess}(v)=\sum_{e: \operatorname{target}(e)=v} f(e)-\sum_{e: \operatorname{source}(e)=v} f(e)$
- If f is a flow, then $\operatorname{excess}(v)=0$, for all $v \in V \backslash\{s, t\}$.
- Value of a flow: $\operatorname{val}(f) \stackrel{\text { def }}{=} \operatorname{excess}(t)$
- Maximum flow problem:

$$
\max \{\operatorname{val}(f) \mid f \text { is a flow in } G\}
$$

- Can be seen as a linear programming problem.

Maximum flow problem ${ }_{\text {(2) }}$

Lemma

If f is a flow, then $\operatorname{excess}(t)=-\operatorname{excess}(s)$.

Proof: We have

$$
\operatorname{excess}(s)+\operatorname{excess}(t)=\sum_{v \in V} \operatorname{excess}(v)=0
$$

- First " $=$ ": $\operatorname{excess}(v)=0$, for $v \in V \backslash\{s, t\}$
- Second " $=$ ": For any edge $e=(v, w)$, the flow through e appears twice in the sum, positively in excess (w) and negatively in excess(v).

Cuts

- A cut is a partition (S, T) of V, i.e., $T=V \backslash S$.
- (S, T) is an (s, t)-cut if $s \in S$ and $t \in T$.
- Capacity of the cut (S, T)

$$
\operatorname{cap}(S, T)=\sum_{E \cap(S \times T)} \operatorname{cap}(e)
$$

- A cut is saturated by f if $f(e)=\operatorname{cap}(e)$, for all $e \in E \cap(S \times T)$, and $f(e)=0$, for all $e \in E \cap(T \times S)$.

Cuts
 (2)

Lemma

If f is a flow and (S, T) an (s, t)-cut, then

$$
\operatorname{val}(f)=\sum_{e \in E \cap(S \times T)} f(e)-\sum_{e \in E \cap(T \times S)} f(e) \leq \operatorname{cap}(S, T) .
$$

If S is saturated by f, then $\operatorname{val}(f)=\operatorname{cap}(S, T)$.

Proof: We have

$$
\begin{aligned}
\operatorname{val}(f) & =-\operatorname{excess}(s)=-\sum_{u \in S} \operatorname{excess}(u)=\sum_{e \in E \cap(S \times T)} f(e)-\sum_{e \in E \cap(T \times S)} f(e) \\
& \leq \sum_{e \in E \cap(S \times T)} \operatorname{cap}(e)=\operatorname{cap}(S)
\end{aligned}
$$

For a saturated cut, the inequality is an equality.

Remarks

- A saturated cut proves the optimality of a flow.
- To show: for every maximal flow there is a saturated cut proving its optimality.

Residual network

The residual network G_{f} for a flow f in $G=(V, E)$ indicates the capacity unused by f. It is defined as follows:

- G_{f} has the same node set as G.
- For every edge $e=(v, w)$ in G, there are up to two edges e^{\prime} and $e^{\prime \prime}$ in G_{f} :

1. if $f(e)<\operatorname{cap}(e)$, there is an edge $e^{\prime}=(v, w)$ in G_{f} with residual capacity $r\left(e^{\prime}\right)=\operatorname{cap}(e)-f(e)$.
2. if $f(e)>0$, there is an edge $e^{\prime \prime}=(w, v)$ in G_{f} with residual capacity $r\left(e^{\prime \prime}\right)=f(e)$.

Theorem

Let f be an (s, t)-flow, let G_{f} be the residual network w.r.t. f, and let S be the set of all nodes reachable from s in G_{f}.

1. If $t \in S$, then f is not maximum.
2. If $t \notin S$, then S is a saturated cut and f is maximum.

Proof

If t is reachable from s in G_{f}, then f is not maximal.

- Let P be a (simple) path from s to t in G_{f}.
- Let δ be the minimum residual capacity of an edge in P. By definition, $r(e)>0$, for all edges e in G_{f}. Therefore, $\delta>0$.
- Construct a flow f^{\prime} of value $\operatorname{val}(f)+\delta$:

$$
f^{\prime}(e)= \begin{cases}f(e)+\delta, & \text { if } e^{\prime} \in P \\ f(e)-\delta, & \text { if } e^{\prime \prime} \in P \\ f(e), & \text { if neither } e^{\prime} \text { nor } e^{\prime \prime} \text { belongs to } P .\end{cases}
$$

- f^{\prime} is a flow and $\operatorname{val}\left(f^{\prime}\right)=\operatorname{val}(f)+\delta$.

Example

If t is not reachable from s in G_{f}, then f is maximal.

- Let S be the set of nodes reachable from s in G_{f}, and let $T=V \backslash S$.
- There is no edge (v, w) in G_{f} with $v \in S$ and $w \in T$.
- Hence
- $f(e)=\operatorname{cap}(e)$, for any $e \in E \cap(S \times T)$, and
- $f(e)=0$, for any $e \in E \cap(T \times S)$.
- Thus S is saturated and, by the Lemma, f is maximal.

Ford-Fulkerson Algorithm

1. Start with the zero flow, i.e., $f(e)=0$, for all $e \in E$.
2. Construct the residual network G_{f}.
3. Check whether t is reachable from s in G_{f}.

- if not, stop.
- if yes, increase the flow along an augmenting path, and iterate.

Analysis

- Let $|V|=n$ and $|E|=m$.
- Each iteration takes time $O(n+m)$.
- If capacities are arbitrary reals, the algorithm may run forever.

Integer capacities

- Suppose capacities are integers, bounded by C.
- $v^{*} \stackrel{\text { def }}{=}$ value of maximum flow $\leq C n$.
- All flows constructed are integral (proof by induction).
- Every augmentation increases flow value by at least 1.
- Running time $O\left((n+m) v^{*}\right) \rightsquigarrow$ pseudo-polynomial algorithm

Edmonds-Karp Algorithm

- Compute a shortest augmenting path, i.e. with a minimum number of arcs.
- Apply breadth-first search (or Dijkstra's algorithm).
- Number of iterations is bound by $n m$, leads to an $O\left(n m^{2}\right)$ maximum flow algorithm.
- Works also for irrational capacities.

Max-Flow Min-Cut Theorem

Theorem

For a network (V, E, s, t) with capacities cap : $E \rightarrow \mathbb{R}_{+}$the maximum value of a flow is equal to the minimum capacity of an (s, t)-cut:

$$
\max \{\operatorname{val}(f) \mid f \text { is a flow }\}=\min \{\operatorname{cap}(S, T) \mid(S, T) \text { is an }(s, t) \text {-cut }\}
$$

Corollary

For integer capacities cap : $E \rightarrow \mathbb{Z}_{+}$, there exists an integer-valued maximum flow $f: E \rightarrow \mathbb{Z}_{+}$.

III. Matching

- $G=(V, E)$ undirected graph
- Matching: Subset of edges $M \subseteq E$, no two of which share an endpoint.
- Maximum matching: Matching of maximum cardinality
- Perfect matching: Every vertex in V is matched.

Augmenting paths

- Let M be a matching in $G=(V, E)$.
- A path $P=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ in G is called M-augmenting if:
- t is odd,
- $v_{1} v_{2}, v_{3} v_{4}, v_{t-2} v_{t-1} \in M$,
- $v_{0}, v_{t} \notin \bigcup M=\bigcup_{e \in M} e$.
- If P is an M-augmenting path and $E(P)$ the edge set of P, then

$$
M^{\prime}=M \triangle E(P)=(M \backslash E(P)) \cup(E(P) \backslash M)
$$

is a matching in G of size $\left|M^{\prime}\right|=|M|+1$.

Berge's Theorem

Theorem (Berge'57)
Let M be a matching in the graph $G=(V, E)$. Then either M is a maximum cardinality matching or there exists an M-augmenting path.

Generic Matching Algorithm

Initialization: $M \leftarrow \emptyset$
Iteration: If there exists an M-augmenting path P, replace $M \leftarrow M \triangle E(P)$.
\rightsquigarrow how can one find an M-augmenting path?

- Difficult in general \rightsquigarrow Edmonds' matching algorithm (Edmonds'65)
- Easy for bipartite graphs

Bipartite graphs

A graph $G=(V, E)$ is bipartite if there exist $A, B \subseteq V$ with $A \cup B=V, A \cap B=\emptyset$ and each edge in E has one end in A and one end in B.

Proposition

A graph $G=(V, E)$ is bipartite if and only if each circuit of G has even length.

Matching augmenting algorithm for bipartite graphs

Input: Bipartite graph $G=(A \cup B, E)$ with matching M.
Output: Matching M^{\prime} with $\left|M^{\prime}\right|>|M|$ or proof that no such matching exists.
Description: Construct a directed graph D_{M} with the same node set as G.
For each edge $e=\{a, b\}$ in G with $a \in A, b \in B$:
if $e \in M$, there is the $\operatorname{arc}(b, a)$ in D_{M}.
if $e \notin M$, there is the $\operatorname{arc}(a, b)$ in D_{M}.
Let $A_{M}=A \backslash \bigcup M$ and $B_{M}=B \backslash \bigcup M$.
M-augmenting paths in G correspond to directed paths in D_{M} starting in A_{M} and ending in B_{M}.

Theorem

A maximum-cardinality matching in a bipartite graph $G=(V, E)$ can be found in time $O(\mid V\|E\|)$.

Bipartite matching as a maximum flow problem

- Add a source s and edges (s, a) for $a \in A$, with capacity 1 .
- Add a sink t and edges (b, t) for $b \in B$, with capacity 1 .
- Direct edges in G from A to B, with capacity 1 .

- Integral flows f correspond to matchings M, with $\operatorname{val}(f)=|M|$.
- Ford-Fulkerson takes time $O(n m)$, since $v^{*} \leq n$.
- Can be improved to $O(\sqrt{n} m)$.

Marriage theorem

Theorem (Hall)

A bipartite graph $G=(A \cup B, E)$, with $|A|=|B|=n$, has a perfect matching if and only if for all $B^{\prime} \subseteq B,\left|B^{\prime}\right| \leq\left|N\left(B^{\prime}\right)\right|$, where $N\left(B^{\prime}\right)$ is the set of all neighbors of nodes in B^{\prime}.

Proof

- Let (S, T) be an (s, t)-cut in the corresponding network.
- Let $A_{S}=A \cap S, A_{T}=A \cap T, B_{S}=B \cap S, B_{T}=B \cap T$.

$$
\begin{aligned}
\operatorname{cap}(S, T) & =\sum_{e \in E \cap S \times T} \operatorname{cap}(e) \\
& =\left|A_{T}\right|+\left|B_{S}\right|+\left|N\left(B_{T}\right) \cap A_{S}\right| \\
& \geq\left|N\left(B_{T}\right) \cap A_{T}\right|+\left|N\left(B_{T}\right) \cap A_{S}\right|+\left|B_{S}\right| \\
& =\left|N\left(B_{T}\right)\right|+\left|B_{S}\right| \\
& \geq\left|B_{T}\right|+\left|B_{S}\right|=|B|=n
\end{aligned}
$$

- By the max-flow min-cut theorem, the maximum flow is at least n.

König's theorem

- $G=(V, E)$ undirected graph
- $C \subseteq V$ is a vertex covering if every edge of G has at least one end in C.
- Lemma: For any matching M and any vertex covering C, we have $|M| \leq|C|$.
- Theorem (König) For a bipartite graph G,
$\max \{|M|: M$ a matching $\}=\min \{|C|: C$ a vertex covering $\}$.

Network connectivity

- $G=(V, E)$ directed graph, $s, t \in V, s \neq t$ non-adjacent.
- Theorem (Menger) The maximum number of arc-disjoint paths from s to t equals the minimum number of arcs whose removal disconnects all paths from s to t.
- Theorem (Menger) The maximum number of node-disjoint paths from s to t equals the minimum number of nodes (different from s and t) whose removal disconnects all paths from s to t.

Duality in linear programming

- Primal problem

$$
\begin{equation*}
z_{P}=\max \left\{\mathbf{c}^{\boldsymbol{\top}} x \mid A x \leq b, x \in \mathbb{R}^{n}\right\} \tag{P}
\end{equation*}
$$

- Dual problem

$$
\begin{equation*}
w_{D}=\min \left\{b^{T} u \mid A^{T} u=\mathbf{c}, u \geq 0\right\} \tag{D}
\end{equation*}
$$

General form

(P)		(D)	
min	$c^{T} x$	\max	$u^{T} b$
w.r.t.	$A_{i * *} x \geq b_{i}, \quad i \in M_{1}$	w.r.t $\quad u_{i} \geq 0, \quad i \in M_{1}$	
	$A_{i * *} x \leq b_{i}, \quad i \in M_{2}$	$u_{i} \leq 0, \quad i \in M_{2}$	
	$A_{i *} x=b_{i}, \quad i \in M_{3}$	u_{i} free, $\quad i \in M_{3}$	
	$x_{j} \geq 0, \quad j \in N_{1}$	$\left(A_{* j}\right)^{T} u \leq c_{j}, \quad j \in N_{1}$	
	$x_{j} \leq 0, \quad j \in N_{2}$	$\left(A_{* j}\right)^{T} u \geq c_{j}, \quad j \in N_{2}$	
	x_{j} free, $\quad j \in N_{3}$	$\left(A_{* j}\right)^{T} u=c_{j}, \quad j \in N_{3}$	

Duality theorems

- Weak duality If x^{*} is primal and u^{*} is dual feasible, then

$$
c^{T} x^{*} \leq z_{P} \leq w_{D} \leq b^{T} u^{*}
$$

- Strong duality If both (P) and (D) have a finite optimum, then $z_{P}=w_{D}$.
- Only four possibilities

1. z_{P} and w_{D} are both finite and equal.
2. $z_{P}=+\infty$ and (D) is infeasible.
3. $w_{D}=-\infty$ and (P) is infeasible.
4. (P) and (D) are both infeasible.

- Primal problem

$$
\begin{array}{ccl}
\max & \sum_{e: \operatorname{source}(e)=s} x_{e}-\sum_{e: \operatorname{target}(e)=s} x_{e} & \\
\text { s.t. } & \sum_{e: \operatorname{target}(e)=v} x_{e}-\sum_{e: \text { source }(e)=v} x_{e}=0, \quad \forall v \in V \backslash\{s, t\} \\
& 0 \leq x_{e} \leq c_{e}, & \forall e \in E
\end{array}
$$

- Dual problem

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} y_{e} \\
& \\
\text { s.t. } & z_{w}-z_{v}+y_{e} \geq 0, \quad \forall e=(v, w) \in E \\
& z_{s}=1, z_{t}=0 \\
& y_{e} \geq 0, \quad \forall e \in E
\end{array}
$$

Maximum flow and duality (2)

- Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the dual.
- Define $S=\left\{v \in V \mid z_{v}^{*}>0\right\}$ and $T=V \backslash S$.
- (S, T) is a minimum cut.
- Max-flow min-cut theorem is a special case of linear programming duality.

Total unimodularity

- A matrix A is totally unimodular if each subdeterminant of A is $0,+1$ or -1 .
- Theorem (Hoffman and Kruskal) $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff the polyhedron $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq\right.$ $b, x \geq 0\}$ is integral, i.e., $P=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$, for any $b \in \mathbb{Z}^{m}$.
- Corollary $A \in \mathbb{Z}^{m \times n}$ is totally unimodular iff for any $b \in \mathbb{Z}^{m}, c \in \mathbb{Z}^{n}$ both optima in the LP duality equation

$$
\max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\}=\left\{\min b^{T} u \mid A^{T} u \geq c, u \geq 0\right\}
$$

are attained by integral vectors (if they are finite).

- Proposition The constraint matrix A arising in a maximum flow problem is totally unimodular.

Matching and linear programming

- $G=(V, E)$ undirected graph, $M \subseteq E$ matching
- Incidence vector: $\chi^{M}: E \rightarrow \mathbb{R}, \chi^{M}(e)= \begin{cases}1, & \text { if } e \in M, \\ 0, & \text { if } e \notin M .\end{cases}$
- Maximum matching as an integer linear program

$$
\max \left\{\sum_{e \in E} x_{e} \mid \sum_{e \ni v} x_{e} \leq 1, \forall v \in V, x_{e} \in\{0,1\}, \forall e \in E\right\}
$$

- For bipartite graphs the constraint matrix is totally unimodular \rightsquigarrow linear program

$$
\max \left\{\sum_{e \in E} x_{e} \mid \sum_{e \ni v} x_{e} \leq 1, \forall v \in V, x_{e} \geq 0, \forall e \in E\right\}
$$

- Dual linear program

$$
\min \left\{\sum_{v \in V} y_{v} \mid y_{v}+y_{w} \geq 1, \forall e=\{v, w\} \in E, y_{v} \geq 0, \forall v \in V\right\}
$$

\rightsquigarrow minimum vertex cover

References

- K. Mehlhorn: Data Structures and Efficient Algorithms, Vol. 2: Graph Algorithms and NP-Completeness, Springer, 1986, http://www.mpi-sb.mpg.de/~mehlhorn/DatAlgbooks.html
- S. Krumke and H. Noltemeier: Graphentheoretische Konzepte und Algorithmen. Teubner, 2005
- A. Schrijver: A Course in Combinatorial Optimization, CWI Amsterdam, 2008, http://homepages.cwi. nl/~lex/files/dict.pdf
- R. K. Ahuja, T. L. Magnanti and J. L. Orlin: Network flows. Prentice Hall, 1993

