Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 3. Dezember 2013, 16:34 7001

Deciding languages in NP
Theorem. If L € NP, then there exists a deterministic Turing machine M and a polynomial p(n) such that

e M decides L and

o Ty(n) <2PM forall ne N.

Proof: Suppose L is accepted by a non-deterministic machine M,y whose running time is bounded by the poly-
nomial g(n).

To decide whether w € L, the machine M will
1. determine the length n of w and compute g(n).

2. simulate all executions of M,y of length at most q(n). If the maximum number of choices of M,y in one
step is r, there are at most r9" such executions.

3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by r . ¢'(n) = O(2P(), for some polynomial p(n).
An alternative characterization of NP

e Proposition. L € NP if and only if there exists L' € P and a polynomial p(n) such that for all w € X*:

wel & Fve @) :|v|<p(wl|)and (w,v) e L’

e Informally, a problem is in NP if it can be solved non-deterministically in the following way:

1. guess a solution/certificate v of polynomial length,

2. check in polynomial time whether v has the desired property.
Propositional satisfiability

e Satisfiability problem SAT

Instance: A formula F in propositional logic with variables x, ..., X,.

Question: Is F satisfiable, i.e., does there exist an assignment /: {x1,...,x,} — {0,1} making
the formula true ?

e Trying all possible assignments would require exponential time.

e Guessing an assignment / and checking whether it satisfies F can be done in (non-deterministic) polyno-
mial time. Thus:

e Proposition. SAT is in NP.
Polynomial reductions

e A polynomial reduction of Ly C >3 to L, C 37 is a polynomially computable function f : X7 — X3 with
we L < f(w) e L.

e Proposition. If L, is polynomially reducible to Lo, then

1. LyePifl, € Pand Ly € NPif L, € NP

7002 Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 3. Dezember 2013, 16:34

2. L, & PifLy & Pand L, & NPif Ly & NP.

Ly and L, are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

Alanguage L C ¥Y* is NP-complete if

1. Le NP
2. Any L’ € NP is polynomially reducible to L.

Proposition. If L is NP-complete and L € P, then P = NP.

Corollary. If L is NP-complete and P NP, then there exists no polynomial algorithm for L.

Structure of the class NP

NP

NP-
complete

Fundamental open problem: P # NP ?
Proving NP-completeness

e Theorem (Cook 1971). SAT is NP-complete.
e Proposition. L is NP-complete if

1. Le NP

2. there exists an NP-complete problem L’ that is polynomially reducible to L.
e Example: INDEPENDENT SET

Instance: Graph G=(V,E) and k € N,k < |V]|.
Question: Is there a subset V' C V such that |V’| > k and no two vertices in V' are joined by
anedgein E?

Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 3. Dezember 2013, 16:34 7003

Reducing 3SAT to INDEPENDENT SET

Let F be a conjunction of n clauses of length 3, i.e., a disjunction of 3 propositional variables or their
negation.

Construct a graph G with 3n vertices that correspond to the variables in F.
For any clause in F, connect by three edges the corresponding vertices in G.
Connect all pairs of vertices corresponding to a variable x and its negation —x.

F is satisfiable if and only if G contains an independent set of size n.
NP-hard problems

Decision problem: solution is either yes or no

Example: Traveling salesman decision problem:
Given a network of cities, distances, and a number B, does there exist a tour with length < B?

Search problem: find an object with required properties

Example: Traveling salesman optimization problem:
Given a network of cities and distances, find a shortest tour.

Decision problem NP-complete = search problem NP-hard

NP-hard problems: at least as hard as NP-complete problems

NP-hard problems in bioinformatics

Multiple sequence alignment Wang/Jiang 94

Protein folding Fraenkel 93

Protein threading Lathrop 94

Protein design Pierce/Winfree 02
Literature

J. E. Hopcroft and J. D. Ullman: Introduction to automata theory, languages and computation. Addison-
Wesley, 1979

M. R. Garey and D. S. Johnson: Computers and intractability. A guide to the theory of NP-completeness.
Freeman, 1979

C. H. Papadimitriou: Computational complexity. Addison-Wesley, 1994

S. Arora and B. Barak: Computational complexity - a modern approach. Camdridge Univ. Press, 2009

