Deciding languages in NP

Theorem. If $L \in N P$, then there exists a deterministic Turing machine M and a polynomial $p(n)$ such that

- M decides L and
- $T_{M}(n) \leq 2^{p(n)}$, for all $n \in \mathbb{N}$.

Proof: Suppose L is accepted by a non-deterministic machine $M_{n d}$ whose running time is bounded by the polynomial $q(n)$.

To decide whether $w \in L$, the machine M will

1. determine the length n of w and compute $q(n)$.
2. simulate all executions of $M_{n d}$ of length at most $q(n)$. If the maximum number of choices of $M_{n d}$ in one step is r, there are at most $r^{q(n)}$ such executions.
3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by $r^{q(n)} \cdot q^{\prime}(n)=O\left(2^{p(n)}\right)$, for some polynomial $p(n)$.

An alternative characterization of NP

- Proposition. $L \in N P$ if and only if there exists $L^{\prime} \in P$ and a polynomial $p(n)$ such that for all $w \in \Sigma^{*}$:

$$
w \in L \Leftrightarrow \exists v \in\left(\Sigma^{\prime}\right)^{*}:|v| \leq p(|w|) \text { and }(w, v) \in L^{\prime}
$$

- Informally, a problem is in NP if it can be solved non-deterministically in the following way:

1. guess a solution/certificate v of polynomial length,
2. check in polynomial time whether v has the desired property.

Propositional satisfiability

- Satisfiability problem SAT

Instance: A formula F in propositional logic with variables x_{1}, \ldots, x_{n}.
Question: Is F satisfiable, i.e., does there exist an assignment $I:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ making the formula true?

- Trying all possible assignments would require exponential time.
- Guessing an assignment $/$ and checking whether it satisfies F can be done in (non-deterministic) polynomial time. Thus:
- Proposition. SAT is in NP.

Polynomial reductions

- A polynomial reduction of $L_{1} \subseteq \Sigma_{1}^{*}$ to $L_{2} \subseteq \Sigma_{2}^{*}$ is a polynomially computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ with $w \in L_{1} \Leftrightarrow f(w) \in L_{2}$.
- Proposition. If L_{1} is polynomially reducible to L_{2}, then

1. $L_{1} \in P$ if $L_{2} \in P$ and $L_{1} \in N P$ if $L_{2} \in N P$
2. $L_{2} \notin P$ if $L_{1} \notin P$ and $L_{2} \notin N P$ if $L_{1} \notin N P$.

- L_{1} and L_{2} are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

- A language $L \subseteq \Sigma^{*}$ is $N P$-complete if

1. $L \in N P$
2. Any $L^{\prime} \in N P$ is polynomially reducible to L.

- Proposition. If L is $N P$-complete and $L \in P$, then $P=N P$.
- Corollary. If L is $N P$-complete and $P \neq N P$, then there exists no polynomial algorithm for L.

Structure of the class NP

Fundamental open problem: $P \neq N P$?

Proving NP-completeness

- Theorem (Cook 1971). SAT is NP-complete.
- Proposition. L is $N P$-complete if

1. $L \in N P$
2. there exists an NP-complete problem L^{\prime} that is polynomially reducible to L.

- Example: INDEPENDENT SET

Instance: Graph $G=(V, E)$ and $k \in \mathbb{N}, k \leq|V|$.
Question: Is there a subset $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right| \geq k$ and no two vertices in V^{\prime} are joined by an edge in E ?

Reducing 3SAT to INDEPENDENT SET

- Let F be a conjunction of n clauses of length 3, i.e., a disjunction of 3 propositional variables or their negation.
- Construct a graph G with $3 n$ vertices that correspond to the variables in F.
- For any clause in F, connect by three edges the corresponding vertices in G.
- Connect all pairs of vertices corresponding to a variable x and its negation $\neg x$.
- F is satisfiable if and only if G contains an independent set of size n.

NP-hard problems

- Decision problem: solution is either yes or no
- Example: Traveling salesman decision problem:

Given a network of cities, distances, and a number B, does there exist a tour with length $\leq B$?

- Search problem: find an object with required properties
- Example: Traveling salesman optimization problem:

Given a network of cities and distances, find a shortest tour.

- Decision problem NP-complete \Rightarrow search problem NP-hard
- NP-hard problems: at least as hard as NP-complete problems

NP-hard problems in bioinformatics

- Multiple sequence alignment

Wang/Jiang 94

- Protein folding

Fraenkel 93

- Protein threading

Lathrop 94

- Protein design

Pierce/Winfree 02

- ...

Literature

- J. E. Hopcroft and J. D. Ullman: Introduction to automata theory, languages and computation. AddisonWesley, 1979
- M. R. Garey and D. S. Johnson: Computers and intractability. A guide to the theory of NP-completeness. Freeman, 1979
- C. H. Papadimitriou: Computational complexity. Addison-Wesley, 1994
- S. Arora and B. Barak: Computational complexity - a modern approach. Camdridge Univ. Press, 2009

