Algorithms WS 12/13, by A. Bockmayr/K. Reinert, 6. Dezember 2012, 12:42 4007

Deciding languages in NP
Theorem. If L € NP, then there exists a deterministic Turing machine M and a polynomial p(n) such that

e M decides L and

e Ty(n) < 2P forall ne N.

Proof: Suppose L is accepted by a non-deterministic machine M,y whose running time is bounded by the poly-
nomial g(n).

To decide whether w € L, the machine M will

1. determine the length n of w and compute g(n).

2. simulate all executions of M,y of length at most g(n). If the maximum number of choices of M,y in one
step is r, there are at most r9") such executions.

3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by r? . ¢’ (n) = O(2P"), for some polynomial p(n).

An alternative characterization of NP

Proposition. L € NP if and only if there exists L € P and a polynomial p(n) such that for all w € X*:

wel & Ive (@) :|v|<p(w])and (w,v) e L’

Informally, a problem is in NP if it can be solved non-deterministically in the following way:

1. guess a solution/certificate v of polynomial length,

2. check in polynomial time whether v has the desired property.

Propositional satisfiability

Satisfiability problem SAT

Instance: A formula F in propositional logic with variables xi, ..., X,.

Question: Is F satisfiable, i.e., does there exist an assignment /: {x1,...,x,} — {0,1} making
the formula true ?

Trying all possible assignments would require exponential time.

Guessing an assignment / and checking whether it satisfies F can be done in (non-deterministic) polyno-
mial time. Thus:

Proposition. SAT is in NP.

4008 Algorithms WS 12/13, by A. Bockmayr/K. Reinert, 6. Dezember 2012, 12:42

Polynomial reductions

A polynomial reduction of Ly C X} to Ly C ¥} is a polynomially computable function f : X7 — X3 with
we Ly & f(w) € L.

Proposition. If Ly is polynomially reducible to Ly, then

1. Ly €Pifloc Pand Ly € NPif L, € NP
2. Lo gPifly€Pand Ly & NPif Ly & NP.

L1 and L, are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

Alanguage L C ¥* is NP-complete if

1. Le NP
2. Any L' € NP is polynomially reducible to L.

Proposition. If L is NP-complete and L € P, then P = NP.

Corollary. If L is NP-complete and P # NP, then there exists no polynomial algorithm for L.

Structure of the class NP

NP

NP-
complete

Fundamental open problem: P # NP ?
Proving NP-completeness

e Theorem (Cook 1971). SAT is NP-complete.
e Proposition. L is NP-complete if

1. Le NP

2. there exists an NP-complete problem L’ that is polynomially reducible to L.
e Example: INDEPENDENT SET

Instance: Graph G=(V,E)and k € N,k <|V/|.
Question: Is there a subset V' C V such that |V’| > k and no two vertices in V' are joined by
anedgein E?

