Deciding languages in NP

Theorem. If $L \in NP$, then there exists a deterministic Turing machine *M* and a polynomial p(n) such that

- M decides L and
- $T_M(n) \leq 2^{p(n)}$, for all $n \in \mathbb{N}$.

Proof: Suppose *L* is accepted by a non-deterministic machine M_{nd} whose running time is bounded by the polynomial q(n).

To decide whether $w \in L$, the machine M will

- 1. determine the length *n* of *w* and compute q(n).
- 2. simulate all executions of M_{nd} of length at most q(n). If the maximum number of choices of M_{nd} in one step is r, there are at most $r^{q(n)}$ such executions.
- 3. if one of the simulated executions accepts w, then M accepts w, otherwise M rejects w.

The overall complexity is bounded by $r^{q(n)} \cdot q'(n) = O(2^{p(n)})$, for some polynomial p(n).

An alternative characterization of NP

• **Proposition.** $L \in NP$ if and only if there exists $L' \in P$ and a polynomial p(n) such that for all $w \in \Sigma^*$:

$$w \in L \iff \exists v \in (\Sigma')^* : |v| \le p(|w|) \text{ and } (w, v) \in L'$$

- Informally, a problem is in NP if it can be solved non-deterministically in the following way:
 - 1. guess a solution/certificate v of polynomial length,
 - 2. check in polynomial time whether v has the desired property.

Propositional satisfiability

• Satisfiability problem SAT

Instance: A formula F in propositional logic with variables $x_1, ..., x_n$.

Question: Is *F* satisfiable, i.e., does there exist an assignment $I : \{x_1, ..., x_n\} \rightarrow \{0, 1\}$ making the formula true ?

- Trying all possible assignments would require exponential time.
- Guessing an assignment *I* and checking whether it satisfies *F* can be done in (non-deterministic) polynomial time. Thus:
- Proposition. SAT is in NP.

Polynomial reductions

- A polynomial reduction of L₁ ⊆ Σ₁^{*} to L₂ ⊆ Σ₂^{*} is a polynomially computable function f : Σ₁^{*} → Σ₂^{*} with w ∈ L₁ ⇔ f(w) ∈ L₂.
- **Proposition.** If L_1 is polynomially reducible to L_2 , then
 - 1. $L_1 \in P$ if $L_2 \in P$ and $L_1 \in NP$ if $L_2 \in NP$
 - 2. $L_2 \notin P$ if $L_1 \notin P$ and $L_2 \notin NP$ if $L_1 \notin NP$.
- L_1 and L_2 are *polynomially equivalent* if they are polynomially reducible to each other.

NP-complete problems

- A language $L \subseteq \Sigma^*$ is *NP-complete* if
 - 1. $L \in NP$
 - 2. Any $L' \in NP$ is polynomially reducible to L.
- **Proposition.** If *L* is *NP*-complete and $L \in P$, then P = NP.
- **Corollary.** If *L* is *NP*-complete and $P \neq NP$, then there exists no polynomial algorithm for *L*.

Structure of the class NP

Fundamental open problem: $P \neq NP$?

Proving NP-completeness

- **Theorem** (Cook 1971). SAT is *NP*-complete.
- Proposition. L is NP-complete if
 - 1. $L \in NP$
 - 2. there exists an *NP*-complete problem L' that is polynomially reducible to *L*.
- Example: INDEPENDENT SET

Instance: Graph G = (V, E) and $k \in \mathbb{N}, k \le |V|$. Question: Is there a subset $V' \subseteq V$ such that $|V'| \ge k$ and no two vertices in V' are joined by an edge in E?