
Algorithms WS 12/13, by A. Bockmayr/K. Reinert, 6. Dezember 2012, 12:42 4007

Deciding languages in NP

Theorem. If L ∈ NP, then there exists a deterministic Turing machine M and a polynomial p(n) such that

• M decides L and

• TM (n) ≤ 2p(n), for all n ∈ N.

Proof: Suppose L is accepted by a non-deterministic machine Mnd whose running time is bounded by the poly-
nomial q(n).

To decide whether w ∈ L, the machine M will

1. determine the length n of w and compute q(n).

2. simulate all executions of Mnd of length at most q(n). If the maximum number of choices of Mnd in one
step is r , there are at most r q(n) such executions.

3. if one of the simulated executions accepts w , then M accepts w , otherwise M rejects w .

The overall complexity is bounded by r q(n) ·q′(n) = O(2p(n)), for some polynomial p(n).

An alternative characterization of NP

• Proposition. L ∈ NP if and only if there exists L′ ∈ P and a polynomial p(n) such that for all w ∈ Σ∗:

w ∈ L ⇔ ∃v ∈ (Σ′)∗ : |v | ≤ p(|w |) and (w ,v) ∈ L′

• Informally, a problem is in NP if it can be solved non-deterministically in the following way:

1. guess a solution/certificate v of polynomial length,

2. check in polynomial time whether v has the desired property.

Propositional satisfiability

• Satisfiability problem SAT

Instance: A formula F in propositional logic with variables x1, ... ,xn.

Question: Is F satisfiable, i.e., does there exist an assignment I : {x1, ... ,xn} → {0,1} making
the formula true ?

• Trying all possible assignments would require exponential time.

• Guessing an assignment I and checking whether it satisfies F can be done in (non-deterministic) polyno-
mial time. Thus:

• Proposition. SAT is in NP.

4008 Algorithms WS 12/13, by A. Bockmayr/K. Reinert, 6. Dezember 2012, 12:42

Polynomial reductions

• A polynomial reduction of L1 ⊆ Σ∗
1 to L2 ⊆ Σ∗

2 is a polynomially computable function f : Σ∗
1 → Σ∗

2 with
w ∈ L1 ⇔ f (w) ∈ L2.

• Proposition. If L1 is polynomially reducible to L2, then

1. L1 ∈ P if L2 ∈ P and L1 ∈ NP if L2 ∈ NP

2. L2
∈ P if L1
∈ P and L2
∈ NP if L1
∈ NP.

• L1 and L2 are polynomially equivalent if they are polynomially reducible to each other.

NP-complete problems

• A language L ⊆ Σ∗ is NP-complete if

1. L ∈ NP

2. Any L′ ∈ NP is polynomially reducible to L.

• Proposition. If L is NP-complete and L ∈ P, then P = NP.

• Corollary. If L is NP-complete and P
= NP, then there exists no polynomial algorithm for L.

Structure of the class NP

NP−

NP

P complete

Fundamental open problem: P
= NP ?

Proving NP-completeness

• Theorem (Cook 1971). SAT is NP-complete.

• Proposition. L is NP-complete if

1. L ∈ NP

2. there exists an NP-complete problem L′ that is polynomially reducible to L.

• Example: INDEPENDENT SET

Instance: Graph G = (V ,E) and k ∈ N,k ≤ |V |.
Question: Is there a subset V ′ ⊆ V such that |V ′| ≥ k and no two vertices in V ′ are joined by
an edge in E ?

