
Algorithms WS 14/15, by A. Bockmayr /K. Reinert, 26. November 2014, 16:37 5007

Hilbert’s Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coeffi-
cients: to devise a process according to which it can be determined by a finite number of operations whether the
equation is solvable in rational integers.

Theorem (Matiyasevich 1970)
Hilbert’s tenth problem is undecidable.

Non-deterministic Turing machines

• Next move relation:
δ⊆ (Q×Γ)× (Q×Γ×{L,R})

• L(M) = set of words w ∈ Σ∗ for which there exists a sequence of moves accepting w .

• Proposition. If L is accepted by a non-deterministic Turing machine M1, then L is accepted by some
deterministic machine M2.

Time complexity

• M a (deterministic) Turing machine that halts on all inputs.

• Time complexity function TM : N→ N

TM (n) = max{m | ∃w ∈ Σ∗, |w | = n such that the computation

of M on w takes m moves}

(assume numbers are coded in binary format)

• A Turing machine is polynomial if there exists a polynomial p(n) with TM (n)≤ p(n), for all n ∈ N.

• The complexity class P is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

• M non-deterministic Turing machine

• The running time of M on w ∈ Σ∗ is

– the length of a shortest sequence of moves accepting w if w ∈ L(M)

– 1, if w 6∈ L(M)

• TM (n) = max{m | ∃w ∈ Σ∗, |w | = n such that the running time of M on w is m}

• The complexity class NP is the class of languages accepted by a polynomial non-deterministic Turing
machine.

5008 Algorithms WS 14/15, by A. Bockmayr /K. Reinert, 26. November 2014, 16:37

Deciding languages in NP

Theorem. If L ∈ NP, then there exists a deterministic Turing machine M and a polynomial p(n) such that

• M decides L and

• TM (n)≤ 2p(n), for all n ∈ N.

Proof: Suppose L is accepted by a non-deterministic machine Mnd whose running time is bounded by the poly-
nomial q(n).

To decide whether w ∈ L, the machine M will

1. determine the length n of w and compute q(n).

2. simulate all executions of Mnd of length at most q(n). If the maximum number of choices of Mnd in one
step is r , there are at most rq(n) such executions.

3. if one of the simulated executions accepts w , then M accepts w , otherwise M rejects w .

The overall complexity is bounded by rq(n) ·q′(n) = O(2p(n)), for some polynomial p(n).

An alternative characterization of NP

• Proposition. L ∈ NP if and only if there exists L′ ∈ P and a polynomial p(n) such that for all w ∈ Σ∗:

w ∈ L ⇔ ∃v ∈ (Σ′)∗ : |v | ≤ p(|w |) and (w ,v) ∈ L′

• Informally, a problem is in NP if it can be solved non-deterministically in the following way:

1. guess a solution/certificate v of polynomial length,

2. check in polynomial time whether v has the desired property.

Propositional satisfiability

• Satisfiability problem SAT

Instance: A formula F in propositional logic with variables x1, ... ,xn.

Question: Is F satisfiable, i.e., does there exist an assignment I : {x1, ... ,xn} → {0,1} making
the formula true ?

• Trying all possible assignments would require exponential time.

• Guessing an assignment I and checking whether it satisfies F can be done in (non-deterministic) polyno-
mial time. Thus:

• Proposition. SAT is in NP.

