Universal language

- $\langle M, w\rangle$: encoding $\langle M\rangle$ of M concatenated with $w \in\{0,1\}^{*}$.
- Universal language

$$
L_{u}=\{\langle M, w\rangle \mid M \text { accepts } w\}
$$

- Theorem. L_{u} is recursively enumerable.
- A Turing machine U accepting L_{u} is called universal Turing machine.
- Theorem (Turing 1936). L_{u} is not recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language $L \subseteq \Sigma^{*}$ the decision problem D_{L}

Input: $w \in \Sigma^{*}$
Output: $\begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L\end{cases}$
and vice versa.

- D_{L} is decidable (resp. semi-decidable) if L is recursive (resp. recursively enumerable).
- D_{L} is undecidable if L is not recursive.

Reductions

- A many-one reduction of $L_{1} \subseteq \Sigma_{1}^{*}$ to $L_{2} \subseteq \Sigma_{2}^{*}$ is a computable function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ with $w \in L_{1} \Leftrightarrow f(w) \in L_{2}$.
- Proposition. If L_{1} is many-one reducible to L_{2}, then

1. L_{1} is decidable if L_{2} is decidable.
2. L_{2} is undecidable if L_{1} is undecidable.

Post's correspondence problem

- Given pairs of words

$$
\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right), \ldots,\left(v_{k}, w_{k}\right)
$$

over an alphabet Σ, does there exist a sequence of integers $i_{1}, \ldots, i_{m}, m \geq 1$, such that

$$
v_{i_{1}}, \ldots, v_{i_{m}}=w_{i_{1}}, \ldots, w_{i_{m}} .
$$

- Example

i	v_{i}	w_{i}
1	1	111
2	10111	10
3	10	0

- Theorem (Post 1946). Post's correspondence problem is undecidable.

Hilbert's Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)
Hilbert's tenth problem is undecidable.

Non-deterministic Turing machines

- Next move relation:

$$
\delta \subseteq(Q \times \Gamma) \times(Q \times \Gamma \times\{L, R\})
$$

- $L(M)=$ set of words $w \in \Sigma^{*}$ for which there exists a sequence of moves accepting w.
- Proposition. If L is accepted by a non-deterministic Turing machine M_{1}, then L is accepted by some deterministic machine M_{2}.

Time complexity

- M a (deterministic) Turing machine that halts on all inputs.
- Time complexity function $T_{M}: \mathbb{N} \rightarrow \mathbb{N}$

$$
\begin{aligned}
T_{M}(n)= & \max \left\{m \left|\exists w \in \Sigma^{*},|w|=n\right.\right. \text { such that the computation } \\
& \text { of } M \text { on } w \text { takes } m \text { moves }\}
\end{aligned}
$$

(assume numbers are coded in binary format)

- A Turing machine is polynomial if there exists a polynomial $p(n)$ with $T_{M}(n) \leq p(n)$, for all $n \in \mathbb{N}$.
- The complexity class P is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- M non-deterministic Turing machine
- The running time of M on $w \in \Sigma^{*}$ is
- the length of a shortest sequence of moves accepting w if $w \in L(M)$
- 1 , if $w \notin L(M)$
- $T_{M}(n)=\max \left\{m\left|\exists w \in \Sigma^{*},|w|=n\right.\right.$ such that the running time of M on w is $\left.m\right\}$
- The complexity class NP is the class of languages accepted by a polynomial non-deterministic Turing machine.

