Universal language

- $\langle M, w \rangle$: encoding $\langle M \rangle$ of M concatenated with $w \in \{0, 1\}^*$.
- Universal language

$$L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$$

- **Theorem.** L_u is recursively enumerable.
- A Turing machine U accepting L_u is called universal Turing machine.
- **Theorem** (Turing 1936). *L_u* is not recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language $L \subseteq \Sigma^*$ the decision problem D_L

$$\label{eq:local_potential} \begin{split} & \text{Input: } w \in \Sigma^* \\ & \text{Output: } \left\{ \begin{array}{ll} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \not\in L \end{array} \right. \end{split}$$

and vice versa.

- D_L is decidable (resp. semi-decidable) if L is recursive (resp. recursively enumerable).
- *D_L* is *undecidable* if *L* is not recursive.

Reductions

- A many-one reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ with $w \in L_1 \Leftrightarrow f(w) \in L_2$.
- **Proposition.** If L_1 is many-one reducible to L_2 , then
 - 1. L_1 is decidable if L_2 is decidable.
 - 2. L_2 is undecidable if L_1 is undecidable.

Post's correspondence problem

Given pairs of words

$$(v_1, w_1), (v_2, w_2), \dots, (v_k, w_k)$$

over an alphabet Σ , does there exist a sequence of integers $i_1, \dots, i_m, m \geq 1$, such that

$$V_{i_1}, \ldots, V_{i_m} = W_{i_1}, \ldots, W_{i_m}.$$

Example

$$\begin{array}{c|cccc}
i & v_i & w_i \\
\hline
1 & 1 & 111 \\
2 & 10111 & 10 \\
3 & 10 & 0
\end{array}
\Rightarrow v_2v_1v_1v_3 = w_2w_1w_1w_3 = 1011111110$$

• Theorem (Post 1946). Post's correspondence problem is undecidable.

Hilbert's Tenth Problem

Hilbert, International Congress of Mathematicians, Paris, 1900

Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: to devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Theorem (Matiyasevich 1970)

Hilbert's tenth problem is undecidable.

Non-deterministic Turing machines

Next move relation:

$$\delta \subseteq (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$$

- L(M) = set of words $w \in \Sigma^*$ for which there exists a sequence of moves accepting w.
- **Proposition.** If L is accepted by a non-deterministic Turing machine M_1 , then L is accepted by some deterministic machine M_2 .

Time complexity

- M a (deterministic) Turing machine that halts on all inputs.
- Time complexity function $T_M : \mathbb{N} \to \mathbb{N}$

$$T_M(n) = \max\{m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the computation of } M \text{ on } w \text{ takes } m \text{ moves}\}$$

(assume numbers are coded in binary format)

- A Turing machine is *polynomial* if there exists a polynomial p(n) with $T_M(n) \le p(n)$, for all $n \in \mathbb{N}$.
- The complexity class P is the class of languages decided by a polynomial Turing machine.

Time complexity of non-deterministic Turing machines

- M non-deterministic Turing machine
- The running time of M on $w \in \Sigma^*$ is
 - the length of a shortest sequence of moves accepting w if $w \in L(M)$
 - 1, if $w \notin L(M)$
- $T_M(n) = \max\{m \mid \exists w \in \Sigma^*, |w| = n \text{ such that the running time of } M \text{ on } w \text{ is } m\}$
- The complexity class NP is the class of languages accepted by a polynomial non-deterministic Turing machine.