Recursive languages

• A language $L \subseteq \Sigma^*$ is *recursively enumerable* if L = L(M), for some Turing machine *M*.

$$w \longrightarrow \boxed{\mathsf{M}} \longrightarrow \begin{cases} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \\ M \text{ does not halt,} & \text{if } w \notin L \end{cases}$$

• A language $L \subseteq \Sigma^*$ is *recursive* if L = L(M) for some Turing machine M that halts on all inputs $w \in \Sigma^*$.

$$w \longrightarrow M \longrightarrow \begin{cases} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \end{cases}$$

• Lemma. *L* is recursive iff both *L* and $\overline{L} = \Sigma^* \setminus L$ are recursively enumerable.

Enumerating languages

- An *enumerator* is a Turing machine *M* with extra output tape *T*, where symbols, once written, are never changed.
- *M* writes to *T* words from Σ^* , separated by \$.
- Let $G(M) = \{ w \in \Sigma^* \mid w \text{ is written to } T \}.$

Some results

- Lemma. For any finite alphabet Σ, there exists a Turing machine that generates the words w ∈ Σ* in canonical ordering (i.e., w ≺ w' ⇔ |w| < |w| or |w| = |w| and w ≺_{lex} w').
- Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding). *Proof:* Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
- **Proposition.** *L* is recursively enumerable iff L = G(M), for some Turing machine *M*.

Computing functions

- Unary encoding of natural numbers: $i \in \mathbb{N} \mapsto \underbrace{||...|}_{i \text{ times}} = |^i$ (binary encoding would also be possible)
- *M* computes $f : \mathbb{N}^k \to \mathbb{N}$ with $f(i_1, ..., i_k) = m$:
 - Start: $|_{i_1}^{i_1} 0 |_{i_2}^{i_2} 0 \dots |_{i_k}^{i_k}$
 - End: |^m
- f partially recursive:

$$i_1, \dots, i_k \longrightarrow \mathbb{M} \longrightarrow \begin{cases} \text{ halts with } f(i_1, \dots, i_k) = m, \\ \text{ does not halt, i.e., } f undefined. \end{cases}$$

• f recursive:

 $i_1, \ldots, i_k \longrightarrow M \longrightarrow$ halts with $f(i_1, \ldots, i_k) = m$.

Turing machines codes

May assume

 $M = (Q, \{0, 1\}, \{0, 1, \#\}, \delta, q_1, \#, \{q_2\})$

Unary encoding

 $0 \mapsto 0, 1 \mapsto 00, \# \mapsto 000, L \mapsto 0, R \mapsto 00$

• $\delta(q_i, X) = (q_j, Y, R)$ encoded by

$$0^{i}1\underbrace{0...0}_{X}10^{i}1\underbrace{0...0}_{Y}1\underbrace{0...0}_{R}$$

- δ encoded by

• Encoding of Turing machine *M* denoted by $\langle M \rangle$.

Numbering of Turing machines

- Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.
- Lemma. The language of Turing machine codes is recursive.
- **Proposition.** There exists a Turing machine *Gen* that generates the binary encodings of all Turing machines.
- Theorem. There exist a bijection between the set of natural numbers, Turing machine codes and Turing machines.

$$\begin{array}{ccc} & & & & \\ \hline Gen & \longrightarrow & & \\ M & \longrightarrow & & \\ & + & counter & \\ \hline & & + & counter & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Diagonalization

- Let w_i be the *i*-th word in $\{0, 1\}^*$ and M_j the *j*-th Turing machine.
- Table T with $t_{ij} = \begin{cases} 1, & \text{if } w_i \in L(M_j) \\ 0, & \text{if } w_i \notin L(M_j) \end{cases}$

$j \longrightarrow$						
		1	2	3	4	
	1	0	1	1	0	
i	2	1	1	0	1	
\downarrow	3	0	0	1	0	
	÷	÷	÷	÷	÷	

- Diagonal language $L_d = \{ w_i \in \{0,1\}^* \mid w_i \notin L(M_i) \}.$
- **Theorem.** *L_d* is not recursively enumerable.
- *Proof:* Suppose $L_d = L(M_k)$, for some $k \in \mathbb{N}$. Then

$$w_k \in L_d \Leftrightarrow w_k \not\in L(M_k),$$

contradicting $L_d = L(M_k)$.

Universal language

- $\langle M, w \rangle$: encoding $\langle M \rangle$ of M concatenated with $w \in \{0, 1\}^*$.
- Universal language

$$L_u = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$$

- **Theorem.** *L_u* is recursively enumerable.
- A Turing machine U accepting L_u is called *universal Turing machine*.
- **Theorem** (Turing 1936). L_u is not recursive.

Decision problems

- Decision problems are problems with answer either yes or no.
- Associate with a language $L \subseteq \Sigma^*$ the decision problem D_L

Input:
$$w \in \Sigma^*$$

Output: $\begin{cases} yes, & \text{if } w \in L \\ no, & \text{if } w \notin L \end{cases}$

and vice versa.

- *D_L* is *decidable* (resp. *semi-decidable*) if *L* is recursive (resp. recursively enumerable).
- *D_L* is *undecidable* if *L* is not recursive.

Reductions

- A many-one reduction of $L_1 \subseteq \Sigma_1^*$ to $L_2 \subseteq \Sigma_2^*$ is a computable function $f : \Sigma_1^* \to \Sigma_2^*$ with $w \in L_1 \Leftrightarrow f(w) \in L_2$.
- **Proposition.** If L₁ is many-one reducible to L₂, then
 - 1. L_1 is decidable if L_2 is decidable.
 - 2. L_2 is undecidable if L_1 is undecidable.

Post's correspondence problem

• Given pairs of words

$$(v_1, w_1), (v_2, w_2), \dots, (v_k, w_k)$$

over an alphabet Σ , does there exist a sequence of integers $i_1, \ldots, i_m, m \ge 1$, such that

$$V_{i_1},\ldots,V_{i_m}=W_{i_1},\ldots,W_{i_m}.$$

• Example

$$\frac{i}{1} \quad \frac{v_i}{1} \quad \frac{w_i}{10111} \Rightarrow v_2 v_1 v_1 v_3 = w_2 w_1 w_1 w_3 = 101111110$$

3 10 0

• Theorem (Post 1946). Post's correspondence problem is undecidable.