What is a computable function ?

• Non-trivial question ~> various formalizations, e.g.

 General recursive functions 	Gödel/Herbrand/Kleene 1936
– λ-calculus	Church 1936
– μ -recursive functions	Gödel/Kleene 1936
- Turing machines	Turing 1936
 Post systems 	Post 1943
 Markov algorithms 	Markov 1951
 Unlimited register machines 	Shepherdson-Sturgis 1963

• • •

• All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine

Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.

Formal definition

- $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$
- *Q* is the finite set of *states*.
- Γ is the finite alphabet of allowable *tape symbols*.
- $\# \in \Gamma$ is the *blank*.
- $\Sigma \subset \Gamma \setminus \{\#\}$ is the set of *input symbols*.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the *next move function* (possibly undefined for some arguments)
- $q_0 \in Q$ is the *start state*.
- $F \subseteq Q$ is the set of *final (accepting) states*.

Recognizing languages

- Instantaneous description: $\alpha_l q \alpha_r$, where
 - q is the current state,
 - $\alpha_l \alpha_r \in \Gamma^*$ is the string on the tape up to the rightmost nonblank symbol,
 - the head is scanning the leftmost symbol of α_r .
- *Move:* $\alpha_l q \alpha_r \vdash \alpha'_l q' \alpha'_r$, by one step of the machine.
- Language accepted

$$L(M) = \{ w \in \Sigma^* \mid q_0 w \vdash^* \alpha_l q \alpha_r, \text{ for some } q \in F \text{ and } \alpha_l, \alpha_r \in \Gamma^* \}$$

• *M* may not halt, if *w* is not accepted.

Example

• Turing machine

 $M = (\{q_0, \dots, q_4\}, \{0, 1\}, \{0, 1, X, Y, \#\}, \delta, q_0, \#, \{q_4\})$

accepting the language $L = \{0^n 1^n \mid n \ge 1\}$

δ	0	1	Х	Y	#
	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	(<i>q</i> ₁ ,0, <i>R</i>)	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	(q ₂ ,0, <i>L</i>)	_	(q_0, X, R)	(q_2, Y, L)	
q_3	_	—	—	(q_3, Y, R)	$(q_4, \#, R)$
q_4	_	_	_	_	_

• Example computation

<i>q</i> ₀ 0011	\vdash	<i>Xq</i> 1011	\vdash	X0q ₁ 11	\vdash	<i>Xq</i> 20 <i>Y</i> 1	\vdash
<i>q</i> 2 <i>X</i> 0 <i>Y</i> 1	\vdash	<i>Xq</i> 00Y1	\vdash	<i>XXq</i> 1 Y1	\vdash	XXYq ₁ 1	\vdash
XXq ₂ YY	\vdash	Xq ₂ XYY	\vdash	XXq_0YY	\vdash	XXYq ₃ Y	\vdash
XXYYq ₃	\vdash	$XXYY#q_4$					

Recursive languages

• A language $L \subseteq \Sigma^*$ is *recursively enumerable* if L = L(M), for some Turing machine M.

$$w \longrightarrow \boxed{\mathsf{M}} \longrightarrow \begin{cases} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \\ M \text{ does not halt,} & \text{if } w \notin L \end{cases}$$

• A language $L \subseteq \Sigma^*$ is *recursive* if L = L(M) for some Turing machine M that halts on all inputs $w \in \Sigma^*$.

$$w \longrightarrow \boxed{\mathsf{M}} \longrightarrow \begin{cases} \text{yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \end{cases}$$

• Lemma. *L* is recursive iff both *L* and $\overline{L} = \Sigma^* \setminus L$ are recursively enumerable.

Enumerating languages

- An *enumerator* is a Turing machine *M* with extra output tape *T*, where symbols, once written, are never changed.
- *M* writes to *T* words from Σ^* , separated by \$.
- Let $G(M) = \{ w \in \Sigma^* \mid w \text{ is written to } T \}.$

Some results

- Lemma. For any finite alphabet Σ, there exists a Turing machine that generates the words w ∈ Σ* in canonical ordering (i.e., w ≺ w' ⇔ |w| < |w| or |w| = |w| and w ≺_{lex} w').
- Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding). *Proof:* Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
- **Proposition.** *L* is recursively enumerable iff L = G(M), for some Turing machine *M*.

Computing functions

- Unary encoding of natural numbers: $i \in \mathbb{N} \mapsto \underbrace{||...|}_{i \text{ times}} = |^i$ (binary encoding would also be possible)
- *M* computes $f : \mathbb{N}^k \to \mathbb{N}$ with $f(i_1, ..., i_k) = m$:
 - Start: $|_{i_1}^{i_1} 0 |_{i_2}^{i_2} 0 \dots |_{i_k}^{i_k}$
 - End: |^m
- f partially recursive:

$$i_1, \dots, i_k \longrightarrow \mathbb{M} \longrightarrow \begin{cases} \text{ halts with } f(i_1, \dots, i_k) = m, \\ \text{ does not halt, i.e., } f undefined. \end{cases}$$

• f recursive:

 $i_1, \ldots, i_k \longrightarrow M \longrightarrow$ halts with $f(i_1, \ldots, i_k) = m$.

Turing machines codes

May assume

 $M = (Q, \{0, 1\}, \{0, 1, \#\}, \delta, q_1, \#, \{q_2\})$

Unary encoding

 $0 \mapsto 0, 1 \mapsto 00, \# \mapsto 000, L \mapsto 0, R \mapsto 00$

• $\delta(q_i, X) = (q_j, Y, R)$ encoded by

$$0^{i}1\underbrace{0...0}_{X}10^{i}1\underbrace{0...0}_{Y}1\underbrace{0...0}_{R}$$

• δ encoded by

 $111 \operatorname{code}_1 11 \operatorname{code}_2 11 \dots 11 \operatorname{code}_r 111$

• Encoding of Turing machine *M* denoted by $\langle M \rangle$.

Numbering of Turing machines

- Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.
- Lemma. There exists a Turing machine Gen that generates the binary encodings of all Turing machines.
- Proposition. The language of Turing machine codes is recursive.
- Corollary. There exist a bijection between the set of natural numbers, Turing machine codes and Turing machines.

$$\begin{array}{c|ccc} \hline & Gen & \longrightarrow & \\ M & \longrightarrow & \langle M \rangle & \longrightarrow & \\ H & + \ counter & \\ \end{array} \longrightarrow number \ n$$

Diagonalization

- Let w_i be the *i*-th word in $\{0, 1\}^*$ and M_j the *j*-th Turing machine.
- Table *T* with $t_{ij} = \begin{cases} 1, & \text{if } w_i \in L(M_j) \\ 0, & \text{if } w_i \notin L(M_j) \end{cases}$

- Diagonal language $L_d = \{w_i \in \{0,1\}^* \mid w_i \notin L(M_i)\}.$
- Theorem. L_d is not recursively enumerable.
- *Proof:* Suppose $L_d = L(M_k)$, for some $k \in \mathbb{N}$. Then

$$w_k \in L_d \Leftrightarrow w_k \notin L(M_k),$$

contradicting $L_d = L(M_k)$.