
Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22 7001

What is a computable function ?

• Non-trivial question various formalizations, e.g.

– General recursive functions Gödel/Herbrand/Kleene 1936

– λ-calculus Church 1936

– µ-recursive functions Gödel/Kleene 1936

– Turing machines Turing 1936

– Post systems Post 1943

– Markov algorithms Markov 1951

– Unlimited register machines Shepherdson-Sturgis 1963

. . .

• All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine

a1 a2 ... a i an... # # ...

finite
control

infinite tape

q

Depending on the symbol scanned and the state of the control, in each step the machine

• changes state,

• prints a symbol on the cell scanned, replacing what is written there,

• moves the head left or right one cell.

Formal definition

• M = (Q,Σ,Γ,δ,q0,#,F)

• Q is the finite set of states.

• Γ is the finite alphabet of allowable tape symbols.

• # ∈ Γ is the blank.

• Σ⊂ Γ\{#} is the set of input symbols.

• δ : Q×Γ→ Q×Γ×{L,R} is the next move function (possibly undefined for some arguments)

• q0 ∈ Q is the start state.

• F ⊆ Q is the set of final (accepting) states.

7002 Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22

Recognizing languages

• Instantaneous description: αl q αr , where

– q is the current state,

– αlαr ∈ Γ∗ is the string on the tape up to the rightmost nonblank symbol,

– the head is scanning the leftmost symbol of αr .

• Move: αl q αr ` α′l q′α′r , by one step of the machine.

• Language accepted

L(M) = {w ∈ Σ∗ | q0w `∗ αlqαr , for some q ∈ F and αl ,αr ∈ Γ∗}

• M may not halt, if w is not accepted.

Example

• Turing machine
M = ({q0, ... ,q4},{0,1},{0,1,X ,Y ,#},δ,q0,#,{q4})

accepting the language L = {0n 1n | n ≥ 1}

δ 0 1 X Y #
q0 (q1,X ,R) − − (q3,Y ,R) −
q1 (q1,0,R) (q2,Y ,L) − (q1,Y ,R) −
q2 (q2,0,L) − (q0,X ,R) (q2,Y ,L) −
q3 − − − (q3,Y ,R) (q4,#,R)
q4 − − − − −

• Example computation

q00011 ` Xq1011 ` X0q111 ` Xq20Y1 `
q2X0Y1 ` Xq00Y1 ` XXq1Y1 ` XXYq11 `
XXq2YY ` Xq2XYY ` XXq0YY ` XXYq3Y `
XXYYq3 ` XXYY#q4

Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22 7003

Recursive languages

• A language L⊆ Σ∗ is recursively enumerable if L = L(M), for some Turing machine M.

w −→ M −→

yes, if w ∈ L
no, if w 6∈ L
M does not halt, if w 6∈ L

• A language L⊆ Σ∗ is recursive if L = L(M) for some Turing machine M that halts on all inputs w ∈ Σ∗.

w −→ M −→
{

yes, if w ∈ L
no, if w 6∈ L

• Lemma. L is recursive iff both L and L = Σ∗ \L are recursively enumerable.

Enumerating languages

• An enumerator is a Turing machine M with extra output tape T , where symbols, once written, are never
changed.

• M writes to T words from Σ∗, separated by $.

• Let G(M) = {w ∈ Σ∗ | w is written to T}.

Some results

• Lemma. For any finite alphabet Σ, there exists a Turing machine that generates the words w ∈ Σ∗ in
canonical ordering (i.e., w ≺ w ′⇔ |w |< |w | or |w | = |w | and w ≺lex w ′).

• Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding).

Proof: Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), . . .

• Proposition. L is recursively enumerable iff L = G(M), for some Turing machine M.

Computing functions

• Unary encoding of natural numbers: i ∈ N 7→ || ... |︸︷︷︸
i times

= |i

(binary encoding would also be possible)

• M computes f : Nk → N with f (i1, ... , ik) = m:

– Start: |i1 0 |i2 0 ... |ik

– End: |m

• f partially recursive:

i1, ... , ik −→ M −→
{

halts with f (i1, ... , ik) = m,
does not halt, i.e., f undefined.

• f recursive:
i1, ... , ik −→ M −→ halts with f (i1, ... , ik) = m.

7004 Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22

Turing machines codes

• May assume
M = (Q,{0,1},{0,1,#},δ,q1,#,{q2})

• Unary encoding
0 7→ 0,1 7→ 00,# 7→ 000,L 7→ 0,R 7→ 00

• δ(qi ,X) = (qj ,Y ,R) encoded by
0i10...0︸︷︷︸

X

10j10...0︸︷︷︸
Y

10...0︸︷︷︸
R

• δ encoded by
111code1 11code2 11...11coder 111

• Encoding of Turing machine M denoted by 〈M〉.

Numbering of Turing machines

• Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.

• Lemma. There exists a Turing machine Gen that generates the binary encodings of all Turing machines.

• Proposition. The language of Turing machine codes is recursive.

• Corollary. There exist a bijection between the set of natural numbers, Turing machine codes and Turing
machines.

Gen −→
M −→ 〈M〉 −→

Equality test
+ counter

−→ number n

Diagonalization

• Let wi be the i-th word in {0,1}∗ and Mj the j-th Turing machine.

• Table T with tij =

{
1, if wi ∈ L(Mj)
0, if wi 6∈ L(Mj)

j −→
1 2 3 4 ...

1 0 1 1 0 ...
i 2 1 1 0 1 ...
↓ 3 0 0 1 0 ...

...
...

...
...

...

• Diagonal language Ld = {wi ∈ {0,1}∗ | wi 6∈ L(Mi)}.

• Theorem. Ld is not recursively enumerable.

• Proof: Suppose Ld = L(Mk), for some k ∈ N. Then

wk ∈ Ld ⇔ wk 6∈ L(Mk),

contradicting Ld = L(Mk).

