Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22 7001

What is a computable function ?

e Non-trivial question ~+ various formalizations, e.g.

— General recursive functions

— A-calculus

p-recursive functions

Turing machines

Post systems

Markov algorithms

Unlimited register machines

Gddel/Herbrand/Kleene 1936
Church 1936

Gédel/Kleene 1936

Turing 1936

Post 1943

Markov 1951
Shepherdson-Sturgis 1963

e All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.

Turing machine

a

a

Wl # | # | - infinite tape

finite
control

Qo

Depending on the symbol scanned and the state of the control, in each step the machine

e changes state,

e prints a symbol on the cell scanned, replacing what is written there,

e moves the head left or right one cell.

e M=(Q,%,T,8,q0,#,F)

e Q) is the finite set of states.

Formal definition

e [is the finite alphabet of allowable tape symbols.

e # c [is the blank.

e Y C I\ {#} is the set of input symbols.

e 5:QxI — Q@xT x{L, R} is the next move function (possibly undefined for some arguments)

® o € Qs the start state.

e F C Qs the set of final (accepting) states.

7002 Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22

Recognizing languages

e [nstantaneous description: o, q o, where

— qis the current state,
— o0, € [* is the string on the tape up to the rightmost nonblank symbol,

— the head is scanning the leftmost symbol of .
e Move: oy qa, - o) g o, by one step of the machine.

e Language accepted

LM)={w e X" | gwtr" ayqo,, for some q € F and o, a1, € "}
e M may not halt, if w is not accepted.
Example

e Turing machine
M=({qo,--,9a},{0,1},{0,1,X, Y, #},8,00,#,{qa})

accepting the language L= {0"1" | n> 1}

) 0 1 X Y #
Q | (g1, X, R) - - (g, Y, R) -

g1 | (g1,0,R) (g2, Y,L) - (1, Y,R) -

G2 | (92,0,L) - (90, X,R) (g2, Y, L) -

qs - - - (g3, Y,R) (qa,#,R)
Q4 - - - - -

e Example computation

Q0011 + Xg;011 F XO0gy11 F XgOY1 F
@X0Y1 F XgOY1 +F XXgu Y1 +F XXYgu1
XXgpYY F XepXYY F XXqYY F XXYgY +
XXYYqs B XXYY#q

Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22 7003

Recursive languages

e Alanguage L C > * is recursively enumerable if L = L(M), for some Turing machine M.

yes, ifwel

WH—) no, ifwélL
M does nothalt, ifw¢lL

e Alanguage L C X>* is recursive if L = L(M) for some Turing machine M that halts on all inputs w € ¥*.

yes, ifwel
W_>_>{ itwe L

no,
e Lemma. L is recursive iff both L and L = £*\ L are recursively enumerable.
Enumerating languages
e An enumerator is a Turing machine M with extra output tape T, where symbols, once written, are never
changed.

e M writes to T words from ¥*, separated by $.
o Let GIM) ={w € X* | wis written to T}.
Some results
e Lemma. For any finite alphabet ¥, there exists a Turing machine that generates the words w € ¥* in
canonical ordering (i.e., w < W' < |w| < |w| or |w| = |w| and w <ex W).

e Lemma. There exists a Turing machine that generates all pairs of natural numbers (in binary encoding).
Proof: Use the ordering (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...

e Proposition. L is recursively enumerable iff L = G(M), for some Turing machine M.
Computing functions

e Unary encoding of natural numbers: i € N — ||...| =’
~—~

i times
(binary encoding would also be possible)

e M computes f : N¥ — N with f(jy, ..., i) = m:
— Start: | 0]20...|*
- End: |7

e f partially recursive:

. . halts with (i3, ..., i) = m,
Howesle — (M) — { does not halt, i.e., f undefined.

e f recursive:
ity ooy ic — [M| —> halts with £(iy, .., i) = m.

7004

Algorithms WS 13/14, by Y. Goldstein/K. Reinert, 25. November 2013, 11:22

Turing machines codes

May assume
M =(Q,{0,1},{0,1,#},8,q1,#.{q2})

Unary encoding
0— 0,1~ 00,#+— 000,L— 0,R+— 00

3(qi, X) = (g, Y, R) encoded by

0'10..010/10...010...0
S~~~ N~~~
X Y R

d encoded by
111 codeq11codes11...11 code, 111

Encoding of Turing machine M denoted by (M).
Numbering of Turing machines

Lemma. There exists a Turing machine that generates the natural numbers in binary encoding.

Lemma. There exists a Turing machine Gen that generates the binary encodings of all Turing machines.

Proposition. The language of Turing machine codes is recursive.

Corollary. There exist a bijection between the set of natural numbers, Turing machine codes and Turing

machines.

Gen| — Equality test
— number n
—

M — (M) + counter

Diagonalization

Let w; be the i-th word in {0,1}* and M; the j-th Turing machine.

Table T with t,,-:{ (1)’ :; m ;t%ﬁ;
j—
123 4
101 10
P21 1 0 1
L 3/0oo0 10

Diagonal language Ly = {w; € {0,1}* | w; & L(M))}.
Theorem. L is not recursively enumerable.
Proof: Suppose Ly = L(Mg), for some k € N. Then
Wi € Lg < wi & L(M),

contradicting Ly = L(Mk).

