Computability and Complexity Theory

Computability and complexity

- Computability theory
 - What is an algorithm?
 - What problems can be solved on a computer?
 - What is a computable function?
 - Solvable vs. unsolvable problems (decidability)
- Complexity theory
 - How much time and memory is needed to solve a problem?
 - Tractable vs. intractable problems

What is a computable function?

Non-trivial question → various formalizations, e.g.

 General recursive functions 	Gödel/Herbrand/Kleene 1936
λ-calculus	Church 1936
$-\mu$ -recursive functions	Gödel/Kleene 1936
 Turing machines 	Turing 1936
 Post systems 	Post 1943
 Markov algorithms 	Markov 1951
 Unlimited register machines 	Shepherdson-Sturgis 1963

. . .

• All these approaches have turned out to be equivalent.

Church-Turing thesis

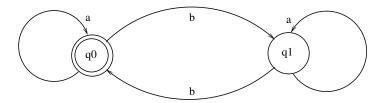
The class of intuitively computable functions is equal to the class of Turing computable functions.

Finite automata

Finite automaton: $M = (Q, \Sigma, \delta, q_0, F)$ with

- Q finite set of states
- Σ finite *input alphabet*
- $\delta: Q \times \Sigma \to Q$ transition function
- $q_0 \in Q$ initial state
- $F \subseteq Q$ set of final states

Example



 $M^0 = (Q, \Sigma, \delta, q_0, F)$ with

- $Q = \{q_0, q_1\}, \quad \Sigma = \{a, b\}, \quad F = \{q_0\}$
- $\delta(q_0, a) = q_0$, $\delta(q_0, b) = q_1$, $\delta(q_1, a) = q_1$, $\delta(q_1, b) = q_0$

Recognizing languages

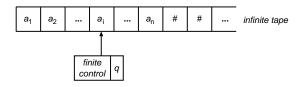
- Denote by Σ^* the set of finite words (strings) over Σ , by $\epsilon \in \Sigma^*$ the empty word.
- Define $\overline{\delta}: Q \times \Sigma^* \to Q$ by

• Language accepted by M:

$$L(M) = \{ w \in \Sigma^* \mid \overline{\delta}(q_0, w) = p, \text{ for some } p \in F \}$$

- Example: $L(M^0)$ is the set of all strings over $\Sigma = \{a, b\}$ with an even number of b's.
- Gene regulatory networks can be modeled as networks of finite automata.

Turing machine



Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.

Formal definition

- $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$
- Q is the finite set of states.
- Γ is the finite alphabet of allowable *tape symbols*.
- # $\in \Gamma$ is the blank.
- $\Sigma \subset \Gamma \setminus \{\#\}$ is the set of *input symbols*.
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the *next move function* (possibly undefined for some arguments)
- $q_0 \in Q$ is the *start state*.
- $F \subseteq Q$ is the set of *final (accepting) states.*

Recognizing languages

- Instantaneous description: $\alpha_l q \alpha_r$, where
 - q is the current state,
 - − $\alpha_l\alpha_r$ ∈ Γ^* is the string on the tape up to the rightmost nonblank symbol,
 - the head is scanning the leftmost symbol of α_r .
- *Move:* $\alpha_l q \alpha_r \vdash \alpha'_l q' \alpha'_r$, by one step of the machine.
- Language accepted by M

$$L(M) = \{ w \in \Sigma^* \mid q_0 w \vdash^* \alpha_l q \alpha_r, \text{ for some } q \in F \text{ and } \alpha_l, \alpha_r \in \Gamma^* \}$$

• *M* may not halt, if *w* is not accepted.

Example

Turing machine

$$M = (\{q_0, ..., q_4\}, \{0, 1\}, \{0, 1, X, Y, \#\}, \delta, q_0, \#, \{q_4\})$$

accepting the language $L = \{0^n 1^n \mid n \ge 1\}$

Example computation

Recursive languages

• A language $L \subseteq \Sigma^*$ is *recursively enumerable* if L = L(M), for some Turing machine M.

$$w \longrightarrow \boxed{\mathsf{M}} \longrightarrow \left\{ egin{array}{ll} \mathsf{yes}, & \mathsf{if} \ w \in L \\ \mathsf{no}, & \mathsf{if} \ w
ot\in L \\ M \ \mathsf{does} \ \mathsf{not} \ \mathsf{halt}, & \mathsf{if} \ w
ot\in L \end{array} \right.$$

• A language $L \subseteq \Sigma^*$ is *recursive* if L = L(M) for some Turing machine M that halts on all inputs $w \in \Sigma^*$.

$$w \longrightarrow \boxed{M} \longrightarrow \begin{cases} \text{ yes,} & \text{if } w \in L \\ \text{no,} & \text{if } w \notin L \end{cases}$$

• **Lemma.** *L* is recursive iff both *L* and $\overline{L} = \Sigma^* \setminus L$ are recursively enumerable.