Computability and Complexity Theory
 Computability and complexity

- Computability theory
- What is an algorithm ?
- What problems can be solved on a computer ?
- What is a computable function ?
- Solvable vs. unsolvable problems (decidability)
- Complexity theory
- How much time and memory is needed to solve a problem ?
- Tractable vs. intractable problems

What is a computable function?

- Non-trivial question \rightsquigarrow various formalizations, e.g.
- General recursive functions

Gödel/Herbrand/Kleene 1936

- λ-calculus

Church 1936

- μ-recursive functions

Gödel/Kleene 1936

- Turing machines Turing 1936
- Post systems

Post 1943

- Markov algorithms

Markov 1951

- Unlimited register machines

Shepherdson-Sturgis 1963

- All these approaches have turned out to be equivalent.

Church-Turing thesis

The class of intuitively computable functions is equal to the class of Turing computable functions.
Finite automata

Finite automaton: $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with

- Q finite set of states
- Σ finite input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ transition function
- $q_{0} \in Q$ initial state
- $F \subseteq Q$ set of final states

Example

$M^{0}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with

- $Q=\left\{q_{0}, q_{1}\right\}, \quad \Sigma=\{a, b\}, \quad F=\left\{q_{0}\right\}$
- $\delta\left(q_{0}, a\right)=q_{0}, \delta\left(q_{0}, b\right)=q_{1}, \delta\left(q_{1}, a\right)=q_{1}, \delta\left(q_{1}, b\right)=q_{0}$

Recognizing languages

- Denote by Σ^{*} the set of finite words (strings) over Σ, by $\varepsilon \in \Sigma^{*}$ the empty word.
- Define $\bar{\delta}: Q \times \Sigma^{*} \rightarrow Q$ by

$$
\begin{aligned}
\bar{\delta}(q, \varepsilon) & =q \text { and } \\
\bar{\delta}(q, w a) & =\delta(\bar{\delta}(q, w), a), \text { for all } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

- Language accepted by M :

$$
L(M)=\left\{w \in \Sigma^{*} \mid \bar{\delta}\left(q_{0}, w\right)=p, \text { for some } p \in F\right\}
$$

- Example: $L\left(M^{0}\right)$ is the set of all strings over $\Sigma=\{a, b\}$ with an even number of b 's.
- Gene regulatory networks can be modeled as networks of finite automata.

Turing machine

Depending on the symbol scanned and the state of the control, in each step the machine

- changes state,
- prints a symbol on the cell scanned, replacing what is written there,
- moves the head left or right one cell.

Formal definition

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \#, F\right)$
- Q is the finite set of states.
- Γ is the finite alphabet of allowable tape symbols.
- $\# \in \Gamma$ is the blank.
- $\Sigma \subset \Gamma \backslash\{\#\}$ is the set of input symbols.
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the next move function (possibly undefined for some arguments)
- $q_{0} \in Q$ is the start state.
- $F \subseteq Q$ is the set of final (accepting) states.

Recognizing languages

- Instantaneous description: $\alpha_{/} q \alpha_{r}$, where
$-q$ is the current state,
$-\alpha_{/} \alpha_{r} \in \Gamma^{*}$ is the string on the tape up to the rightmost nonblank symbol,
- the head is scanning the leftmost symbol of α_{r}.
- Move: $\alpha_{/} q \alpha_{r} \vdash \alpha_{l}^{\prime} q^{\prime} \alpha_{r}^{\prime}$, by one step of the machine.
- Language accepted by M

$$
L(M)=\left\{w \in \Sigma^{*} \mid q_{0} w \vdash^{*} \alpha_{l} q \alpha_{r}, \text { for some } q \in F \text { and } \alpha_{l}, \alpha_{r} \in \Gamma^{*}\right\}
$$

- M may not halt, if w is not accepted.

Example

- Turing machine

$$
M=\left(\left\{q_{0}, \ldots, q_{4}\right\},\{0,1\},\{0,1, X, Y, \#\}, \delta, q_{0}, \#,\left\{q_{4}\right\}\right)
$$

accepting the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

δ	0	1	X	Y	$\#$
q_{0}	$\left(q_{1}, X, R\right)$	-	-	$\left(q_{3}, Y, R\right)$	-
q_{1}	$\left(q_{1}, 0, R\right)$	$\left(q_{2}, Y, L\right)$	-	$\left(q_{1}, Y, R\right)$	-
q_{2}	$\left(q_{2}, 0, L\right)$	-	$\left(q_{0}, X, R\right)$	$\left(q_{2}, Y, L\right)$	-
q_{3}	-	-	-	$\left(q_{3}, Y, R\right)$	$\left(q_{4}, \#, R\right)$
q_{4}	-	-	-	-	-

- Example computation

$$
\begin{array}{cccccccc}
q_{0} 0011 & \vdash & X q_{1} 011 & \vdash & X 0 q_{1} 11 & \vdash & X q_{2} 0 Y 1 & \vdash \\
q_{2} X 0 Y 1 & \vdash & X q_{0} 0 Y 1 & \vdash & X X q_{1} Y 1 & \vdash & X X Y q_{1} 1 & \vdash \\
X X q_{2} Y Y & \vdash & X q_{2} X Y Y & \vdash & X X q_{0} Y Y & \vdash & X X Y q_{3} Y & \vdash \\
X X Y Y q_{3} & \vdash & X X Y Y \# q_{4} & & & & & \\
&
\end{array}
$$

Recursive languages

- A language $L \subseteq \Sigma^{*}$ is recursively enumerable if $L=L(M)$, for some Turing machine M.

$$
w \longrightarrow \mathrm{M} \longrightarrow \begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L \\ M \text { does not halt, } & \text { if } w \notin L\end{cases}
$$

- A language $L \subseteq \Sigma^{*}$ is recursive if $L=L(M)$ for some Turing machine M that halts on all inputs $w \in \Sigma^{*}$.

$$
w \longrightarrow \mathrm{M} \longrightarrow \begin{cases}\text { yes, } & \text { if } w \in L \\ \text { no, } & \text { if } w \notin L\end{cases}
$$

- Lemma. L is recursive iff both L and $\bar{L}=\Sigma^{*} \backslash L$ are recursively enumerable.

